We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The principal aim of this article is to attach and study $p$-adic $L$-functions to cohomological cuspidal automorphic representations $\Pi$ of $\operatorname {GL}_{2n}$ over a totally real field $F$ admitting a Shalika model. We use a modular symbol approach, along the global lines of the work of Ash and Ginzburg, but our results are more definitive because we draw heavily upon the methods used in the recent and separate works of all three authors. By construction, our $p$-adic $L$-functions are distributions on the Galois group of the maximal abelian extension of $F$ unramified outside $p\infty$. Moreover, we work under a weaker Panchishkine-type condition on $\Pi _p$ rather than the full ordinariness condition. Finally, we prove the so-called Manin relations between the $p$-adic $L$-functions at all critical points. This has the striking consequence that, given a unitary $\Pi$ whose standard $L$-function admits at least two critical points, and given a prime $p$ such that $\Pi _p$ is ordinary, the central critical value $L(\frac {1}{2}, \Pi \otimes \chi )$ is non-zero for all except finitely many Dirichlet characters $\chi$ of $p$-power conductor.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.