There is increasing public concern about poultry welfare; the quality of animal welfare is closely related to the quality of livestock products and the health of consumers. Good animal welfare promotes the healthy growth of poultry, which can reduce the disease rate and improve the production quality and capacity. As behaviour responses are an important expression of welfare, the study of behaviour is a simple and non-invasive method to assess animal welfare. The use of modern technology offers the possibility to monitor the behaviour of broilers and laying hens in a continuous and automated way. This paper reviews the latest technologies used for monitoring the behaviour of broilers and laying hens under both experimental conditions and commercial applications and discusses the potential of developing a precision livestock farming (PLF) system. The techniques that are presented and discussed include sound analysis, which can be an online tool to automatically monitor poultry behaviour non-invasively at the group level; wireless, wearable sensors with radio-frequency identification devices, which can automatically identify individual chickens, track the location and movement of individuals in real time and quantify some behavioural traits accordingly and image processing technology, which can be considered a direct tool for measuring behaviours, especially activity behaviours and disease early warning. All of these technologies can monitor and analyse poultry behaviour, at the group level or individual level, on commercial farms. However, the popularity and adoption of these technologies has been hampered by the logistics of applying them to thousands and tens of thousands of birds on commercial farms. This review discusses the advantages and disadvantages of these techniques in commercial applications and presents evidence that they provide potential tools to automatically monitor the behaviours of broilers and laying hens on commercial farms. However, there still has a long way to go to develop a PLF system to detect and predict abnormal situations.