Suppose that $D\subset \mathbb{C}$ is a simply connected subdomain containing the origin and $f(z_{1})$ is a normalized convex (resp., starlike) function on $D$. Let $$\begin{eqnarray}\unicode[STIX]{x1D6FA}_{N}(D)=\bigg\{(z_{1},w_{1},\ldots ,w_{k})\in \mathbb{C}\times \mathbb{C}^{n_{1}}\times \cdots \times \mathbb{C}^{n_{k}}:\Vert w_{1}\Vert _{p_{1}}^{p_{1}}+\cdots +\Vert w_{k}\Vert _{p_{k}}^{p_{k}}<\frac{1}{\unicode[STIX]{x1D706}_{D}(z_{1})}\bigg\},\end{eqnarray}$$ where $p_{j}\geqslant 1$, $N=1+n_{1}+\cdots +n_{k}$, $w_{1}\in \mathbb{C}^{n_{1}},\ldots ,w_{k}\in \mathbb{C}^{n_{k}}$ and $\unicode[STIX]{x1D706}_{D}$ is the density of the hyperbolic metric on $D$. In this paper, we prove that $$\begin{eqnarray}\unicode[STIX]{x1D6F7}_{N,1/p_{1},\ldots ,1/p_{k}}(f)(z_{1},w_{1},\ldots ,w_{k})=(f(z_{1}),(f^{\prime }(z_{1}))^{1/p_{1}}w_{1},\ldots ,(f^{\prime }(z_{1}))^{1/p_{k}}w_{k})\end{eqnarray}$$ is a normalized convex (resp., starlike) mapping on $\unicode[STIX]{x1D6FA}_{N}(D)$. If $D$ is the unit disk, then our result reduces to Gong and Liu via a new method. Moreover, we give a new operator for convex mapping construction on an unbounded domain in $\mathbb{C}^{2}$. Using a geometric approach, we prove that $\unicode[STIX]{x1D6F7}_{N,1/p_{1},\ldots ,1/p_{k}}(f)$ is a spiral-like mapping of type $\unicode[STIX]{x1D6FC}$ when $f$ is a spiral-like function of type $\unicode[STIX]{x1D6FC}$ on the unit disk.