Let ${{\mathcal{S}}_{r}}$ be the collection of all axially symmetric functions $f$ in the Sobolev space ${{H}^{1}}\left( {{\mathbb{S}}^{2}} \right)$ such that $\int_{{{\mathbb{S}}^{2}}}{{{x}_{i}}{{e}^{2f\left( x \right)}}\,dw\left( \text{x} \right)}$ vanishes for $i\,=\,1,\,2,\,3$. We prove that
$$\underset{f\in {{\mathcal{S}}_{r}}}{\mathop \inf }\,\frac{1}{2}\int_{{{\mathbb{S}}^{2}}}{{{\left| \nabla f \right|}^{2}}\,dw\,+\,2\,\int_{{{\mathbb{S}}^{2}}}{f\,dw\,-\,\log \,\int_{{{\mathbb{S}}^{2}}}{{{e}^{2f}}\,dw\,>\,-\infty ,}}}$$
and that this infimum is attained. This complements recent work of Feldman, Froese, Ghoussoub and Gui on a conjecture of Chang and Yang concerning the Moser-Aubin inequality.