We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The structural integrity of the anterior cingulum has been repeatedly observed to be abnormal in patients with schizophrenia. More recently, aberrant myelination of frontal fasciculi, especially, cingulum has been proposed to underlie delayed corollary discharges that can affect sense of agency and contribute to delusions of control (Schneiderian delusions). Using the magnetization transfer phenomenon at an ultra-high field 7T MRI, we investigated the putative myelin content of cingulum bundle in patients with schizophrenia.
Methods
Seventeen clinically stable patients with schizophrenia and 20 controls were recruited for this 7T MRI study. We used a region-of-interest method and extracted magnetization transfer ratio (MTR) from left and right dorsal cingulum bundles and estimated patients v. controls differences. We also related the cingulum MTR values to the severity of Schneiderian delusions.
Results
Patients had a significant reduction in the MTR, indicating reduced myelin content, in the cingulum bundle (right cingulum Hedges’ g = 0.91; left cingulum g = 0.03). The reduced MTR of left cingulum was associated with higher severity of Schneiderian delusions (τ = −0.45, p = 0.026) but no such relationship was seen for the right cingulum MTR (τ = −0.136, p = 0.50) among patients. The association between the left cingulum MTR and Schneiderian delusions was not explained by the presence of other delusions, hallucinations, disorganization or negative symptoms.
Conclusions
Dysmyelination of the cingulum bundle is seen in a subgroup of patients with schizophrenia and may be involved in the mechanism of Schneiderian delusions.
Fractional anisotropy in the uncinate fasciculus and the cingulum may be biomarkers for bipolar disorder and may even be distinctly affected in different subtypes of bipolar disorder, an area in need of further research.
Aims
This study aims to establish if fractional anisotropy in the uncinate fasciculus and cingulum shows differences between healthy controls, patients with bipolar disorder type I (BD-I) and type II (BD-II), and their unaffected siblings.
Method
Fractional anisotropy measures from the uncinate fasciculus, cingulum body and parahippocampal cingulum were compared with tractography methods in 40 healthy controls, 32 patients with BD-I, 34 patients with BD-II, 17 siblings of patients with BD-I and 14 siblings of patients with BD-II.
Results
The main effects were found in both the right and left uncinate fasciculus, with patients with BD-I showing significantly lower fractional anisotropy than both patients with BD-II and healthy controls. Participants with BD-II did not differ from healthy controls. Siblings showed similar effects in the left uncinate fasciculus. In a subsequent complementary analysis, we investigated the association between fractional anisotropy in the uncinate fasciculus and polygenic risk for bipolar disorder and psychosis in a large cohort (n = 570) of healthy participants. However, we found no significant association.
Conclusions
Fractional anisotropy in the uncinate fasciculus differs significantly between patients with BD-I and patients with BD-II and healthy controls. This supports the hypothesis of differences in the physiological sub-tract between bipolar disorder subtypes. Similar results were found in unaffected siblings, suggesting the potential for this biomarker to represent an endophenotype for BD-I. However, fractional anisotropy in the uncinate fasciculus seems unrelated to polygenic risk for bipolar disorder or psychosis.
Increased intra-individual variability (IIV) in reaction time (RT) across various tasks is one ubiquitous neuropsychological finding in attention deficit hyperactivity disorder (ADHD). However, neurobiological underpinnings of IIV in individuals with ADHD have not yet been fully delineated. The ex-Gaussian distribution has been proved to capture IIV in RT. The authors explored the three parameters [μ (mu), σ (sigma), τ (tau)] of an ex-Gaussian RT distribution derived from the Conners' continuous performance test (CCPT) and their correlations with the microstructural integrity of the frontostriatal–caudate tracts and the cingulum bundles.
Method
We assessed 28 youths with ADHD (8–17 years; 25 males) and 28 age-, sex-, IQ- and handedness-matched typically developing (TD) youths using the CCPT, Wechsler Intelligence Scale for Children, 3rd edition and magnetic resonance imaging (MRI). Microstructural integrity, indexed by generalized fractional anisotropy (GFA), was measured by diffusion spectrum imaging tractrography on a 3-T MRI system.
Results
Youths with ADHD had larger σ (s.d. of Gaussian distribution) and τ (mean of exponential distribution) and reduced GFA in four bilateral frontostriatal tracts. With increased inter-stimulus intervals of CCPT, the magnitude of greater τ in ADHD than TD increased. In ADHD youths, the cingulum bundles and frontostriatal integrity were associated with three ex-Gaussian parameters and with μ (mean of Gaussian distribution) and τ, respectively; while only frontostriatal GFA was associated with μ and τ in TD youths.
Conclusions
Our findings suggest the crucial role of the integrity of the cingulum bundles in accounting for IIV in ADHD. Involvement of different brain systems in mediating IIV may relate to a distinctive pathophysiological processing and/or adaptive compensatory mechanism.
Achanthes inflata (Kütz) Grun. et la variété elata (Leud.-Fontm.) Hust. ont été étudiés au microscope électronique. L'espèce et la variété, outre la forme de la valve, se différencient par quelques caractères structuraux. Une attention particulière a été portée sur l'organisation du cingulum ; le nombre d'éléments qui le composent est variable en fonction du stade où se trouve la cellule entre deux divisions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.