We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Clinical research requires a competent workforce of clinical research professionals (CRPs) who are well-trained to perform varied and complex tasks within their roles. The Joint Task Force for Clinical Trial Competency (JTF) framework established essential domains for conducting high-quality clinical research that can guide professional development of CRPs. The Research Professionals Network (RPN) Workshops were established in 2017 to focus on developing ongoing inter-institutional, peer-led, JTF-centric continuing education for CRPs. Four institutions and their affiliates are part of the collaboration.
Methods:
Workshop participant survey data and other metrics were collected over four academic years. Both quantitative and qualitative analyses were performed to assess participant experience and identify relevant themes.
Results:
Participants demonstrated overall high satisfaction with the workshops and significantly value the interpersonal, inter-institutional collaboration made possible through the workshops.
Conclusions:
These inter-institutional RPN Workshops have evolved into a Community of Practice, which can be expanded into future opportunities.
The knowledge, skills, and abilities needed for clinical research professionals (CRPs) are described in the Joint Task Force (JTF) for Clinical Trial Competencies Framework as a basis for leveled educational programs, training curricula, and certification. There is a paucity of literature addressing team science competencies tailored to CRPs. Gaps in training, research, and education can restrict their capability to effectively contribute to team science.
Materials/Methods:
The CRP Team Science team consisted of 18 members from 7 clinical and translational science awarded institutions. We employed a multi-stage, modified Delphi approach to define “Smart Skills” and leveled team science skills examples using individual and team science competencies identified by Lotrecchiano et al.
Results:
Overall, 59 team science Smart Skills were identified resulting in 177 skills examples across three levels: fundamental, skilled, and advanced. Two examples of the leveled skillsets for individual and team competencies are illustrated. Two vignettes were created to illustrate application for training.
Discussion:
This work provides a first-ever application of team science for CRPs by defining specific individual and team science competencies for each level of the CRP career life course. This work will enhance the JTF Domains 7 (Leadership and Professionalism) and 8 (Communication and Teamwork) which are often lacking in CRP training programs. The supplement provides a full set of skills and examples from this work.
Conclusion:
Developing team science skills for CRPs may contribute to more effective collaborations across interdisciplinary clinical research teams. These skills may also improve research outcomes and stabilize the CRP workforce.
Identification of evidence-based factors related to status of the clinical research professional (CRP) workforce at academic medical centers (AMCs) will provide context for National Center for Advancing Translational Science (NCATS) policy considerations and guidance. The objective of this study is to explore barriers and opportunities related to the recruitment and retention of the CRP workforce.
Materials and Methods:
Qualitative data from a series of Un-Meeting breakout sessions and open-text survey questions were analyzed to explore barriers and recommendations for improving AMC CRP recruitment, retention and diversity.
Results:
While certain institutions have established competency-based frameworks for job descriptions, standardization remains generally lacking across CTSAs. AMCs report substantial increases in unfilled CRP positions leading to operational instability. Data confirmed an urgent need for closing gaps in CRP workforce at AMCs, especially for attracting, training, retaining, and diversifying qualified personnel. Improved collaboration with human resource departments, engagement with principal investigators, and overcoming both organizational and resource challenges were suggested strategies, as well as development of outreach to universities, community colleges, and high schools raising awareness of CRP career pathways.
Discussion:
Based on input from 130 CRP leaders at 35 CTSAs, four National Institute of General Medical Sciences’ Institutional Development Award (IDeA) program sites, along with industry and government representatives, we identified several barriers to successful recruitment and retention of a highly trained and diverse CRP workforce. Results, including securing institutional support, champions, standardizing and adopting proven national models, improving local institutional policies to facilitate CRP hiring and job progression point to potential solutions.
Defining key barriers to the development of a well-trained clinical research professional (CRP) workforce is an essential first step in identifying solutions for successful CRP onboarding, training, and competency development, which will enhance quality across the clinical and translational research enterprise. This study aimed to summarize barriers and best practices at academic medical centers related to effective CRP onboarding, training, professional development, identify challenges with the assessment of and mentoring for CRP competency growth, and describe opportunities to improve training and professionalization for the CRP career pathway.
Materials/Methods:
Qualitative data from a series of Un-Meeting breakout sessions and open-text survey questions were analyzed to explore the complex issues involved when developing high-quality onboarding and continuing education opportunities for CRPs at academic medical centers.
Results:
Results suggest there are several barriers to training the CRP workforce, including balancing foundational onboarding with role-based training, managing logistical challenges and institutional contexts, identifying/enlisting institutional champions, assessing competency, and providing high-quality mentorship. Several of these themes are interrelated. Two universal threads present throughout all themes are the need for effective communication and the need to improve professionalization of the CRP career pathway.
Conclusion:
Few institutions have solved all the issues related to training a competent and adaptable CRP workforce, although some have addressed one or more. We applied a socio-technical lens to illustrate our findings and the need for NCATS-funded academic medical centers to work collaboratively within and across institutions to overcome training barriers and support a vital, well-qualified workforce and present several exemplars from the field to help attain this goal.
There is a clear need to educate and train the clinical research workforce to conduct scientifically sound clinical research. Meeting this need requires the creation of tools to assess both an individual’s preparedness to function efficiently in the clinical research enterprise and tools to evaluate the quality and effectiveness of programs that are designed to educate and train clinical research professionals. Here we report the development and validation of a competency self-assessment entitled the Competency Index for Clinical Research Professionals, version II (CICRP-II).
Methods:
CICRP-II was developed using data collected from clinical research coordinators (CRCs) participating in the “Development, Implementation and Assessment of Novel Training In Domain-Based Competencies” (DIAMOND) project at four clinical and translational science award (CTSA) hubs and partnering institutions.
Results:
An exploratory factor analysis (EFA) identified a two-factor structure: the first factor measures self-reported competence to perform Routine clinical research functions (e.g., good clinical practice regulations (GCPs)), while the second factor measures competence to perform Advanced clinical functions (e.g., global regulatory affairs). We demonstrate the between groups validity by comparing CRCs working in different research settings.
Discussion:
The excellent psychometric properties of CICRP-II and its ability to distinguish between experienced CRCs at research-intensive CTSA hubs and CRCs working in less-intensive community-based sites coupled with the simplicity of alternative methods for scoring respondents make it a valuable tool for gauging an individual’s perceived preparedness to function in the role of CRC as well as an equally valuable tool to evaluate the value and effectiveness of clinical research education and training programs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.