We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Absent arterial valve leaflets are rare anomalies. On the basis of our understanding of the normal development of the arterial valves, we draw inferences that might offer clues to their morphogenesis.
Methods
We describe the findings from four human fetal autopsies with so-called “absent” arterial valvar leaflets. We then make inferences relative to these finding on the basis of our current understanding of normal development, the latter obtained by analysis of episcopic data sets from a large series of mouse embryos.
Results
The fetuses had died between 12 and 15 weeks of gestation. In two cases, we found absence of the leaflets of the pulmonary valve, with patency of the arterial duct, but otherwise normal hearts. In a third case, there was absence of the leaflets of both arterial valves, along with a perimembranous ventricular septal defect and a “window-type” arterial duct. This fetus had a completely muscular subaortic infundibulum. The last fetus had a pulmonary dominant common arterial trunk, with absence of the truncal valvar leaflets, but again with a muscular subtruncal infundibulum. Findings from the analysis of the mouse embryos reveal that the arterial valvar leaflets are formed from the distal outflow cushions, but that the cushions have a separate function in septating the arterial roots and the proximal outflow tracts.
Conclusions
When interpreting the fetal findings in the light of development, we conclude that there had been normal fusion of the major outflow cushions, but failure in excavation of their peripheral margins in three of the cases. In the fourth case, however, the cushions had not only failed to excavate but had also failed to separate the arterial roots.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.