We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Consider the multiplication operator MB in $L^2(\mathbb{T})$, where the symbol B is a finite Blaschke product. In this article, we characterize the commutant of MB in $L^2(\mathbb{T})$. As an application of this characterization result, we explicitly determine the class of conjugations commuting with $M_{z^2}$ or making $M_{z^2}$ complex symmetric by introducing a new class of conjugations in $L^2(\mathbb{T})$. Moreover, we analyse their properties while keeping the whole Hardy space, model space and Beurling-type subspaces invariant. Furthermore, we extended our study concerning conjugations in the case of finite Blaschke products.
A bounded linear operator $T$ on a Banach space $X$ is an abstract backward shift if the nullspace of $T$ is one dimensional, and the union of the null spaces of ${{T}^{k}}$ for all $k\,\ge \,1$ is dense in $X$. In this paper it is shown that the commutant of an abstract backward shift is an integral domain. This result is used to derive properties of operators in the commutant.
Let f be a function in H∞. We show that if f is inner or if the commutant of the analytic Toeplitz operator Tf is equal to that of Tb for some finite Blaschke product b, then any analytic Toeplitz operator quasisimilar to Tf is unitarily equivalent to Tf.
We prove the following statements about bounded linear operators on a complex separable infinite dimensional Hilbert space. (1) Let A and B* be subnormal operators. If A2X = XB2 and A3X = XB3 for some operator X, then AX = XB. (2) Let A and B* be subnormal operators. If A2X – XB2 ∈ Cp and A3X – XB3 ∈ Cp for some operator X, then AX − XB ∈ C8p. (3) Let T be an operator such that 1 − T*T ∈ Cp for some p ≥1. If T2X − XT2 ∈ Cp and T3X – XT3 ∈ Cp for some operator X, then TX − XT ∈ Cp. (4) Let T be a semi-Fredholm operator with ind T < 0. If T2X − XT2 ∈ C2 and T3X − XT3 ∈ C2 for some operator X, then TX − XT ∈ C2.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.