This article considers the linear 1-d Schrödinger equation in (0,π)
perturbed by a vanishing viscosity term depending on a small parameter
ε > 0. We study the boundary controllability properties of this
perturbed equation and the behavior of its boundary controls
vε as ε goes to zero. It
is shown that, for any time T sufficiently large but independent of
ε and for each initial datum in
H−1(0,π), there exists a uniformly bounded
family of controls
(vε)ε in
L2(0, T) acting on the extremity
x = π. Any weak limit of this family is a control for
the Schrödinger equation.