Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T15:56:05.307Z Has data issue: false hasContentIssue false

Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity

Published online by Cambridge University Press:  19 January 2011

Sorin Micu
Affiliation:
Facultatea de Matematica si Informatica, Universitatea din Craiova, 200585 Craiova, Romania. sd_micu@yahoo.com, roventaionel@yahoo.com
Ionel Rovenţa
Affiliation:
Facultatea de Matematica si Informatica, Universitatea din Craiova, 200585 Craiova, Romania. sd_micu@yahoo.com, roventaionel@yahoo.com
Get access

Abstract

This article considers the linear 1-d Schrödinger equation in (0) perturbed by a vanishing viscosity term depending on a small parameter ε > 0. We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls vε as ε goes to zero. It is shown that, for any time T sufficiently large but independent of ε and for each initial datum in H−1(0), there exists a uniformly bounded family of controls (vε)ε in L2(0, T) acting on the extremity x = π. Any weak limit of this family is a control for the Schrödinger equation.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aamo, O.M., Smyshlyaev, A. and Krstić, M., Boundary control of the linearized Ginzburg-Landau model of vortex shedding. SIAM J. Control Optim. 43 (2005) 19531971. Google Scholar
S.A. Avdonin and S.A. Ivanov, Families of exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press (1995).
Ball, J. and Slemrod, M., Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems. Commun. Pure Appl. Math. XXXII (1979) 555587. Google Scholar
Bartuccelli, M., Constantin, P., Doering, C.R., Gibbon, J.D. and Gisselfält, M., On the possibility of soft and hard turbulence in the complex Ginzburg Landau equation. Physica D 44 (1990) 421444. Google Scholar
Baudouin, L. and Puel, J.-P., Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Probl. 18 (2002) 15371554. Google Scholar
J.-M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs 136. Am. Math. Soc., Providence (2007).
Coron, J.-M. and Guerrero, S., Singular optimal control : a linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44 (2005) 237257. Google Scholar
DiPerna, R.J., Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal. 82 (1983) 2770. Google Scholar
Fu, X., A weighted identity for partial differential operators of second order and its applications. C. R. Acad. Sci. Paris, Sér. I 342 (2006) 579584. Google Scholar
Fu, X., Null controllability for the parabolic equation with a complex principal part. J. Funct. Anal. 257 (2009) 13331354. Google Scholar
A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, Lect. Notes Ser. 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996).
Glass, O., A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852868. Google Scholar
L. Ignat and E. Zuazua, Dispersive Properties of Numerical Schemes for Nonlinear Schrödinger Equations, in Foundations of Computational Mathematics, Santander 2005, London Math. Soc. Lect. Notes 331, L.M. Pardo, A. Pinkus, E. Suli and M.J. Todd Eds., Cambridge University Press (2006) 181–207.
Ignat, L. and Zuazua, E., Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47 (2009) 13661390. Google Scholar
Ingham, A.E., A note on Fourier transform. J. London Math. Soc. 9 (1934) 2932. Google Scholar
Ingham, A.E., Some trigonometric inequalities with applications to the theory of series. Math. Zeits. 41 (1936) 367379. Google Scholar
Kahane, J.P., Pseudo-Périodicité et Séries de Fourier Lacunaires. Ann. Scient. Ec. Norm. Sup. 37 (1962) 9395. Google Scholar
V. Komornik and P. Loreti, Fourier Series in Control Theory. Springer-Verlag, New York (2005).
M. Léautaud, Uniform controllability of scalar conservation laws in the vanishing viscosity limit. Preprint (2010).
Lebeau, G., Contrôle de l’équation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267291. Google Scholar
C.D. Levermore and M. Oliver, The complex Ginzburg Landau equation as a model problem, in Dynamical Systems and Probabilistic Methods in Partial Differential Equations, in Lect. Appl. Math. 31, Am. Math. Soc., Providence (1996) 141–190.
López, A., Zhang, X. and Zuazua, E., Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures Appl. 79 (2000) 741808. Google Scholar
Machtyngier, E., Exact controllability for the Schrödinger equation. SIAM J. Control Optim. 32 (1994) 2434. Google Scholar
Mercado, A., Osses, A. and Rosier, L., Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Probl. 24 (2008) 150170. Google Scholar
Micu, S. and de Teresa, L., A spectral study of the boundary controllability of the linear 2-D wave equation in a rectangle. Asymptot. Anal. 66 (2010) 139160. Google Scholar
R.E.A.C. Paley and N. Wiener, Fourier Transforms in Complex Domains, AMS Colloq. Publ. 19. Am. Math. Soc., New York (1934).
Redheffer, R.M., Completeness of sets of complex exponentials. Adv. Math. 24 (1977) 162. Google Scholar
Rosier, L. and Zhang, B.-Y., Null controllability of the complex Ginzburg Landau equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 649673. Google Scholar
Salerno, M., Malomed, B.A. and Konotop, V.V., Shock wave dynamics in a discrete nonlinear Schrödinger equation with internal losses. Phys. Rev. 62 (2000) 86518656. Google Scholar
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts, Springer, Basel (2009).
R. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980).
J. Zabczyk, Mathematical Control Theory : An Introduction. Birkhäuser, Basel (1992).
Zhang, X., A remark on null exact controllability of the heat equation. SIAM J. Control Optim. 40 (2001) 3953. Google Scholar