We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we construct differential equations in the modular parameter and find solutions to these equations in simple cases. The solutions can generically be assembled into vector-valued modular forms, which have proven fruitful in recent works in mathematics and physics. We will establish that, in general, each component of a vector-valued modular form is a modular form for a congruence subgroup.
Congruence subgroups form a countable infinite class of discrete non-Abelian subgroups of SL(2,Z) and play a particularly prominent role in deriving the arithmetic properties of modular forms. In this chapter, we study various aspects of congruence subgroups, including their elliptic points, cusps, and topological properties of the associated modular curve. Jacobi theta-functions, theta-constants, and the Dedekind eta-function are used as examples of modular forms under congruence subgroups that are not modular forms under the full modular group SL(2,Z).
This paper is the first of a two part series devoted to describing relations between congruence and crystallographic braid groups. We recall and introduce some elements belonging to congruence braid groups and we establish some (iso)-morphisms between crystallographic braid groups and corresponding quotients of congruence braid groups.
We prove a representation stability result for the codimension-one cohomology of the level-three congruence subgroup of $\mathbf{SL}_{n}(\mathbb{Z})$. This is a special case of a question of Church, Farb, and Putman which we make more precise. Our methods involve proving finiteness properties of the Steinberg module for the group $\mathbf{SL}_{n}(K)$ for $K$ a field. This also lets us give a new proof of Ash, Putman, and Sam’s homological vanishing theorem for the Steinberg module. We also prove an integral refinement of Church and Putman’s homological vanishing theorem for the Steinberg module for the group $\mathbf{SL}_{n}(\mathbb{Z})$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.