We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove contact Poincaré and Sobolev inequalities in Heisenberg groups $\mathbb{H}^{n}$, where the word ‘contact’ is meant to stress that de Rham’s exterior differential is replaced by the exterior differential of the so-called Rumin complex $(E_{0}^{\bullet },d_{c})$, which recovers the scale invariance under the group dilations associated with the stratification of the Lie algebra of $\mathbb{H}^{n}$. In addition, we construct smoothing operators for differential forms on sub-Riemannian contact manifolds with bounded geometry, which act trivially on cohomology. For instance, this allows us to replace a closed form, up to adding a controlled exact form, with a much more regular differential form.
As a sample application of Siefring’s intersection theory, this lecture demonstrates its use in the proof of a result of the author on the symplectic fillings of planar contact 3-manifolds. This application can be viewed as a punctured analogue of the theorem of McDuff on symplectic ruled surfaces discussed in Lectures 1 and 2.
This lecture concludes our survey of closed holomorphic curves with a discussion, in the first section, of local intersection numbers, positivity of intersections and the adjunction formula for closed holomorphic curves, and then, in the second section, with an explanation of how these figure into the proof of McDuff’s theorem on symplectic ruled surfaces. The last two sections then begin a shift in focus toward punctured holomorphic curves: this discussion starts with a general introduction to contact manifolds and their symplectic fillings and then continues by defining the moduli space of punctured asymptotically cylindrical holomorphic curves in a completed symplectic cobordism between contact manifolds.
In this paper, we introduce two quantities defined on a surface in a contact manifold. The first one is called degree of transversality $(\text{DOT})$, which measures the transversality between the tangent spaces of a surface and the contact planes. The second quantity, called curvature of transversality $(\text{COT})$, is designed to give a comparison principle for $\text{DOT}$ along characteristic curves under bounds on $\text{COT}$. In particular, this gives estimates on lengths of characteristic curves, assuming $\text{COT}$ is bounded below by a positive constant.
We show that surfaces with constant $\text{COT}$ exist, and we classify all graphs in the Heisenberg group with vanishing $\text{COT}$. This is accomplished by showing that the equation for graphs with zero $\text{COT}$ can be decomposed into two first order PDEs, one of which is the backward invisicid Burgers’ equation. Finally we show that the p-minimal graph equation in the Heisenberg group also has such a decomposition. Moreover, we can use this decomposition to write down an explicit formula of a solution near a regular point.
We give a characterization of contact manifolds in terms of symplectic Lie–Rinehart–Jacobi algebras. We also give a sufficient condition for a Jacobi manifold to be a contact manifold.
The study of the Vassiliev invariants of Legendrian knots was started by D. Fuchs and S. Tabachnikov who showed that the groups of C-valued Vassiliev invariants of Legendrian and of framed knots in the standard contact R3 are canonically isomorphic. Recently we constructed the first examples of contact 3-manifolds where Vassiliev invariants of Legendrian and of framed knots are different. Moreover in these examples Vassiliev invariants of Legendrian knots distinguish Legendrian knots that are isotopic as framed knots and homotopic as Legendrian immersions. This raised the question what information about Legendrian knots can be captured using Vassiliev invariants. Here we answer this question by showing that for any contact 3-manifold with a cooriented contact structure the groups of Vassiliev invariants of Legendrian knots and of knots that are nowhere tangent to a vector field that coorients the contact structure are canonically isomorphic.
We consider germs of mappings of a line to contact space and classify the first simple singularities up to the action of contactomorphisms in the target space and diffeomorphisms of the line. Even in these first cases there arises a new interesting interaction of local commutative algebra with contact structure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.