We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study non-autonomous parabolic equations with critical exponents in a scale of Banach spaces Eσ, σ ∈ [0,1 + μ). We consider a suitable E1+ε-solution and describe continuation properties of the solution. This concerns both a situation when the solution can be continued as an E1+ε-solution and a situation when the E1+ε-norm of the solution blows up, in which case a piecewise E1+ε-solution is constructed.
In the early 70s A. Kaneko studied the problem of continuation of regular solutions of systems of linear partial differential equations with constant coefficients to compact convex sets. We show here that the conditions be obtained for real analytic solutions also hold in the quasi-analytic case. In particular we show that every quasi-analytic solution of the system p(D)u = 0 defined outside a compact convex subset K or Rn can be continued as a quasi-analytic solution to K if and only if the system is determined and the -module Ext1(Coker p′, ) has no elliptic component; here is the ring of polynomials in n variables, p is a matrix with elements from and p′ is the transposed matrix. In the scalar case, i.e. when p is a single polynomial, these conditions mean that p has no elliptic factor.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.