We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Collateral status is an indicator of a favorable outcome in stroke. Leptomeningeal collaterals provide alternative routes for brain perfusion following an arterial occlusion or flow-limiting stenosis. Using a large cohort of ischemic stroke patients, we examined the relative contribution of various demographic, laboratory, and clinical variables in explaining variability in collateral status.
Methods:
Patients with acute ischemic stroke in the anterior circulation were enrolled in a multi-center hospital-based observational study. Intracranial occlusions and collateral status were identified and graded using multiphase computed tomography angiography. Based on the percentage of affected territory filled by collateral supply, collaterals were graded as either poor (0–49%), good (50–99%), or optimal (100%). Between-group differences in demographic, laboratory, and clinical factors were explored using ordinal regression models. Further, we explored the contribution of measured variables in explaining variance in collateral status.
Results:
386 patients with collateral status classified as poor (n = 64), good (n = 125), and optimal (n = 197) were included. Median time from symptom onset to CT was 120 (IQR: 78–246) minutes. In final multivariable model, male sex (OR 1.9, 95% CIs [1.2, 2.9], p = 0.005) and leukocytosis (OR 1.1, 95% CIs [1.1, 1.2], p = 0.001) were associated with poor collaterals. Measured variables only explained 44.8–53.0% of the observed between-patient variance in collaterals.
Conclusion:
Male sex and leukocytosis are associated with poorer collaterals. Nearly half of the variance in collateral flow remains unexplained and could be in part due to genetic differences.
Evidence of cerebral degeneration is not apparent on routine brain MRI in amyotrophic lateral sclerosis (ALS). Texture analysis can detect change in images based on the statistical properties of voxel intensities. Our objective was to test the utility of texture analysis in detecting cerebral degeneration in ALS. A secondary objective was to determine whether the performance of texture analysis is dependent on image resolution.
Methods
High-resolution (0.5×0.5 mm2 in-plane) coronal T2-weighted MRI of the brain were acquired from 12 patients with ALS and 19 healthy controls on a 4.7 Tesla MRI system. Image data sets at lower resolutions were created by down-sampling to 1×1, 2×2, 3×3, and 4×4 mm2. Texture features were extracted from a slice encompassing the corticospinal tract at the different resolutions and tested for their discriminatory power and correlations with clinical measures. Subjects were also classified by visual assessment by expert reviewers.
Results
Texture features were different between ALS patients and healthy controls at 1×1, 2×2, and 3×3 mm2 resolutions. Texture features correlated with measures of upper motor neuron function and disability. Optimal classification performance was achieved when best-performing texture features were combined with visual assessment at 2×2 mm2 resolution (0.851 area under the curve, 83% sensitivity, 79% specificity).
Conclusions
Texture analysis can detect subtle abnormalities in MRI of ALS patients. The clinical yield of the method is dependent on image resolution. Texture analysis holds promise as a potential source of neuroimaging biomarkers in ALS.