We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We recently introduced a weighted Banach algebra $\mathcal{A}_{G}^{n}$ of functions that are holomorphic on the unit disc $\mathbb{D}$, continuous up to the boundary, and of the class ${{C}^{\left( n \right)}}$ at all points where the function $G$ does not vanish. Here, $G$ refers to a function of the disc algebra without zeros on $\mathbb{D}$. Then we proved that all closed ideals in $\mathcal{A}_{G}^{n}$ with at most countable hull are standard. In this paper, on the assumption that $G$ is an outer function in ${{C}^{\left( n \right)}}\,\left( {\bar{\mathbb{D}}} \right)$ having infinite roots in $\mathcal{A}_{G}^{n}$ and countable zero set ${{h}_{o}}\left( G \right)$, we show that all the closed ideals $I$ with hull containing ${{h}_{o}}\left( G \right)$ are standard.