We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter analyzes linear and nonlinear discrete-time systems described by a discrete-time state-space model whose inputs are uncertain but known to belong to an ellipsoid. For the linear case, even if the input set is an ellipsoid, the set containing all possible values that the state can take is not an ellipsoid in general, but it can be upper bounded by an ellipsoid. We develop techniques for recursively computing a family of such upper-bounding ellipsoids. Within this family, we then show how to choose ellipsoids that are optimal in some sense, e.g., they have minimum volume. For the nonlinear case, we will again resort to linearization techniques to approximately characterize the set containing all possible values that the state can take. The application of the techniques presented is illustrated using the same inertia-less AC microgrid model used in Chapter 5.
This chapter provides techniques for analyzing discrete-time dynamical systems under probabilistic input uncertainty. Here, the relation between the input and the state is described by a discrete-time state-space model. The input vector is modeled as a vector-valued stochastic process with known first and second moments (or known pdf). The first part of the chapter is devoted to the analysis of linear systems and provides techniques for characterizing the first and second moments and the pdf of the state vector. The second part deals with the analysis of nonlinear systems, where we use the techniques developed in Chapter 4 to exactly characterize the distribution of the state vector when the pdf of the input vector is given. In addition, we rely on linearization techniques to obtain expressions that approximately characterize the first and second moments and the pdf of the state vector. The third part of the chapter illustrates the application of the techniques developed to the analysis of inertia-less AC microgrids under random active power injections.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.