Book contents
- Frontmatter
- Dedication
- Contents
- Preface and Acknowledgments
- Notation
- 1 Introduction
- 2 Preliminaries
- 3 Static Systems: Probabilistic Input Uncertainty
- 4 Static Systems: Probabilistic Structural Uncertainty
- 5 Discrete-Time Systems: Probabilistic Input Uncertainty
- 6 Continuous-Time Systems: Probabilistic Input Uncertainty
- 7 Static Systems: Set-Theoretic Input Uncertainty
- 8 Discrete-Time Systems: Set-Theoretic Input Uncertainty
- 9 Continuous-Time Systems: Set-Theoretic Input Uncertainty
- Appendix A Mathematical Background
- Appendix B Power Flow Modeling
- References
- Index
5 - Discrete-Time Systems: Probabilistic Input Uncertainty
Published online by Cambridge University Press: 17 January 2022
- Frontmatter
- Dedication
- Contents
- Preface and Acknowledgments
- Notation
- 1 Introduction
- 2 Preliminaries
- 3 Static Systems: Probabilistic Input Uncertainty
- 4 Static Systems: Probabilistic Structural Uncertainty
- 5 Discrete-Time Systems: Probabilistic Input Uncertainty
- 6 Continuous-Time Systems: Probabilistic Input Uncertainty
- 7 Static Systems: Set-Theoretic Input Uncertainty
- 8 Discrete-Time Systems: Set-Theoretic Input Uncertainty
- 9 Continuous-Time Systems: Set-Theoretic Input Uncertainty
- Appendix A Mathematical Background
- Appendix B Power Flow Modeling
- References
- Index
Summary
This chapter provides techniques for analyzing discrete-time dynamical systems under probabilistic input uncertainty. Here, the relation between the input and the state is described by a discrete-time state-space model. The input vector is modeled as a vector-valued stochastic process with known first and second moments (or known pdf). The first part of the chapter is devoted to the analysis of linear systems and provides techniques for characterizing the first and second moments and the pdf of the state vector. The second part deals with the analysis of nonlinear systems, where we use the techniques developed in Chapter 4 to exactly characterize the distribution of the state vector when the pdf of the input vector is given. In addition, we rely on linearization techniques to obtain expressions that approximately characterize the first and second moments and the pdf of the state vector. The third part of the chapter illustrates the application of the techniques developed to the analysis of inertia-less AC microgrids under random active power injections.
Keywords
- Type
- Chapter
- Information
- Large-Scale System Analysis Under UncertaintyWith Electric Power Applications, pp. 130 - 165Publisher: Cambridge University PressPrint publication year: 2022