We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Willmore surfaces in space-forms are characterized by the harmonicity of the mean curvature sphere congruence. In this chapter, we introduce the concept of perturbed harmonicity of a bundle, which will apply to the mean curvature sphere congruence to provide a characterization of constrained Willmore surfaces in space-forms. A generalization of the well-developed integrable systems theory of harmonic maps emerges. The starting point is a zero-curvature characterization of constrained Willmore surfaces, due to Burstall–Calderbank, which we derive in this chapter. Constrained Willmore surfaces come equipped with a family of flat metric connections. We then define a spectral deformation of perturbed harmonic bundles, by the action of a loop of flat metric connections, and Bäcklund transformations, defined by the application of a version of the Terng–Uhlenbeck dressing action by simple factors. Transformations on the level of perturbed harmonic bundles prove to give rise to transformations on the level of constrained Willmore surfaces, via the mean curvature sphere congruence. We establish a permutability between spectral deformation and Bäcklund transformation and show that all these transformations corresponding to the zero Lagrange multiplier preserve the class of Willmore surfaces. We define, more generally, transformations of complexified surfaces and prove that, for special choices of parameters, both spectral deformation and Bäcklund transformation preserve reality conditions.
We generalize Uhlenbeck’s generator theorem of ${\mathcal{L}}^{-}\operatorname{U}_{n}$ to the full rational loop group ${\mathcal{L}}^{-}\operatorname{GL}_{n}\mathbb{C}$ and its subgroups ${\mathcal{L}}^{-}\operatorname{GL}_{n}\mathbb{R}$, ${\mathcal{L}}^{-}\operatorname{U}_{p,q}$: they are all generated by just simple projective loops. Recall that Terng–Uhlenbeck studied the dressing actions of such projective loops as generalized Bäcklund transformations for integrable systems. Our result makes a nice supplement: any rational dressing is the composition of these Bäcklund transformations. This conclusion is surprising in the sense that Lie theory suggests the indispensable role of nilpotent loops in the case of noncompact reality conditions, and nilpotent dressings appear quite complicated and mysterious. The sacrifice is to introduce some extra fake singularities. So we also propose a set of generators if fake singularities are forbidden. A very geometric and physical construction of $\operatorname{U}_{p,q}$ is obtained as a by-product, generalizing the classical construction of unitary groups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.