We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The use of imaging that employs ionising radiation is increasing in the setting of paediatric cardiology. Children's high radiosensitivity and the lack of contemporary radiation data warrant a review of the radiation doses from the latest “state-of-the-art” angiography and computed tomography systems.
Objectives
In children aged less than 16 years with congenital cardiac disease, we aimed to report: recent trends in the use of diagnostic angiography and cardiac dual-source computed tomography; the characteristics, lesions, and imaging histories of patients undergoing these procedures; and the average radiation doses imparted by each modality.
Study design
Retrospective review of consecutive cases undergoing cardiac computed tomography or diagnostic angiography in a teaching hospital between January, 2008 and December, 2009. Radiation doses were converted to effective doses (millisievert) using published conversion factors.
Results
Angiography was performed 3.7 times more often than computed tomography. Computed tomography examinations increased by 92.5%, whereas angiography decreased by 26.4% in 2009 compared with 2008. Patients undergoing computed tomography were younger and weighed less than those undergoing angiography, but lesions were similar between the 2 groups. Multiple lifetime angiography was more prevalent than multiple lifetime computed tomography (p < 0.001). The median procedural dose – range – from angiography and computed tomography was 5 (0.2–27.8) and 1.7 (0.5–9.5) millisieverts, respectively (p < 0.001).
Conclusion
Despite not being completely analogous investigations, computed tomography should be considered prior to angiography and not withheld on radiation dose concerns, given that it imparts lower and more consistent doses than conventional angiography.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.