In the current research, the application and capability of electric discharge treatment (EDT) for enhancing the cytocompatibility and tribological properties of medical-grade Co–Cr alloy were investigated. The Co–Cr specimens were treated by copper tungsten (Cu–W) electrode in a deionized water tank (dielectric medium) at different spark energy levels. To examine the cytocompatibility of substrates, the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was performed to evaluate the substrate cell viability. Furthermore, the wear rate and coefficient of friction of the substrates were examined on a pin-on-disc tribometer. In vitro cytocompatibility results revealed that the % viability of the MG-63 cells on EDT sample was approximately two times improved compared with that on the untreated surface. The tribological results showed that the treated samples have better friction reducing properties and four times higher wear resistance compared with unmachined Co–Cr samples. The surface modification at 10 A current and 60 µs pulse on-time and 150 µs off-time were found as significant parameters in both assessments.