We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove some weighted sharp inequalities of Trudinger–Moser type. The weights considered here have a logarithmic growth. These inequalities are completely new and are established in some new Sobolev spaces where the norm is a mixture of the norm of the gradient in two different Lebesgue spaces. This fact allowed us to prove a very interesting result of sharpness for the case of doubly exponential growth at infinity. Some improvements of these inequalities for the weakly convergent sequences are also proved using a version of the Concentration-Compactness principle of P.L. Lions. Taking profit of these inequalities, we treat in the last part of this work some elliptic quasilinear equation involving the weighted $(N,q)-$Laplacian operator where $1 < q < N$ and a nonlinearities enjoying a new type of exponential growth condition at infinity.
In this paper, we study the Lieb's translation lemma in Coulomb–Sobolev space and then apply it to investigate the existence of Pohožaev type ground state solution for elliptic equation with van der Waals type potential.
This paper is concerned with the existence of solutions for a class of elliptic equations on the unit ball with zero Dirichlet boundary condition. The nonlinearity is supercritical in the sense of Trudinger–Moser. Using a suitable approximating scheme we obtain the existence of at least one positive solution.
We prove the global logarithmic stability of the Cauchy problem for $H^{2}$-solutions of an anisotropic elliptic equation in a Lipschitz domain. The result is based on existing techniques used to establish stability estimates for the Cauchy problem combined with related tools used to study an inverse medium problem.
We propose a non-traditional finite element method with non-body-fitting grids to solve the matrix coefficient elliptic equations with imperfect contact in two dimensions, which has not been well-studied in the literature. Numerical experiments demonstrated the effectiveness of our method.
In this paper we present a one dimensional second order accurate method to solve Elliptic equations with discontinuous coefficients on an arbitrary interface. Second order accuracy for the first derivative is obtained as well. The method is based on the Ghost Fluid Method, making use of ghost points on which the value is defined by suitable interface conditions. The multi-domain formulation is adopted, where the problem is split in two sub-problems and interface conditions will be enforced to close the problem. Interface conditions are relaxed together with the internal equations (following the approach proposed in [10] in the case of smooth coefficients), leading to an iterative method on all the set of grid values (inside points and ghost points). A multigrid approach with a suitable definition of the restriction operator is provided. The restriction of the defect is performed separately for both sub-problems, providing a convergence factor close to the one measured in the case of smooth coefficient and independent on the magnitude of the jump in the coefficient. Numerical tests will confirm the second order accuracy. Although the method is proposed in one dimension, the extension in higher dimension is currently underway [12] and it will be carried out by combining the discretization of [10] with the multigrid approach of [11] for Elliptic problems with non-eliminated boundary conditions in arbitrary domain.
We are concerned with the asymptotic analysis of optimal controlproblems for 1-D partial differential equations defined on aperiodic planar graph, as the period of the graph tends to zero. Wefocus on optimal control problems for elliptic equations withdistributed and boundary controls. Using approaches of the theory ofhomogenization we show that the original problem on the periodicgraph tends to a standard linear quadratic optimal control problemfor a two-dimensional homogenized system, and its solution can beused as suboptimal controls for the original problem.
Let $\Omega$ be a smooth bounded domain in ${R}^N$. We prove general uniqueness results for equations of the form $- \Delta u = au - b(x) f(u)$ in $\Omega$, subject to $u = \infty$ on $\partial \Omega$. Our uniqueness theorem is established in a setting involving Karamata's theory on regularly varying functions, which is used to relate the blow-up behavior of $u(x)$ with $f(u)$ and $b(x)$, where $b \equiv 0$ on $\partial \Omega$ and a certain ratio involving $b$ is bounded near $\partial \Omega$. A key step in our proof of uniqueness uses a modification of an iteration technique due to Safonov.
We study the sequence un, which is solution
of $-{\rm div}(a(x,{\nabla}u_n)) + \Phi''(|u_n|)\,u_n= f_n+ g_n$ in Ω an
open bounded
set of RN and un= 0 on ∂Ω, when fn tends to a
measure concentrated on a set of null Orlicz-capacity. We consider the relation
between this capacity and the N-function Φ, and prove a non-existence
result.
In 1914 Bohr proved that there is an $r \in (0,1)$
such that if a power series converges in the unit disk and its sum has modulus less than $1$ then, for $|z| < r$, the sum of absolute values of its terms is again less than $1$. Recently, analogous results have been obtained for functions of several variables. The aim of this paper is to place the theorem of Bohr in the context of solutions to second-order elliptic equations satisfying the maximum principle.