Factor analysis is regularly used for analyzing survey data. Missing data, data with outliers and consequently nonnormal data are very common for data obtained through questionnaires. Based on covariance matrix estimates for such nonstandard samples, a unified approach for factor analysis is developed. By generalizing the approach of maximum likelihood under constraints, statistical properties of the estimates for factor loadings and error variances are obtained. A rescaled Bartlett-corrected statistic is proposed for evaluating the number of factors. Equivariance and invariance of parameter estimates and their standard errors for canonical, varimax, and normalized varimax rotations are discussed. Numerical results illustrate the sensitivity of classical methods and advantages of the proposed procedures.