Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T19:34:15.099Z Has data issue: false hasContentIssue false

BLOW-UP OF THE NONEQUIVARIANT ($2+1$)-DIMENSIONAL WAVE MAP

Published online by Cambridge University Press:  18 March 2014

JÖRG FRAUENDIENER*
Affiliation:
Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand email rpeter@maths.otago.ac.nz
RALF PETER
Affiliation:
Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand email rpeter@maths.otago.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It has been known for a long time that the equivariant $2+1$ wave map into the $2$-sphere blows up if the initial data are chosen appropriately. Here, we present numerical evidence for the stability of the blow-up phenomenon under explicit violations of equivariance.

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Society 

References

Andersen, H. C., “Rattle: a ‘velocity’ version of the SHAKE algorithm for molecular dynamics calculations”, J. Comput. Phys. 52 (1983) 2434 doi:10.1016/0021-9991(83)90014-1.CrossRefGoogle Scholar
Bartels, S., Feng, X. and Prohl, A., “Finite element approximations of wave maps into spheres”, SIAM J. Numer. Anal. 46 (2007) 6187 doi:10.1137/060659971.CrossRefGoogle Scholar
Bartels, S., “Semi-implicit approximation of wave maps into smooth or convex surfaces”, SIAM J. Numer. Anal. 47 (2009) 34863506 doi:10.1137/080731475.CrossRefGoogle Scholar
Bizoń, P., Chmaj, T. and Tabor, Z., “Formation of singularities for equivariant ($2+1$)-dimensional wave maps into the 2-sphere”, Nonlinearity 14 (2001) 10411053 doi:10.1088/0951-7715/14/5/308.CrossRefGoogle Scholar
Isenberg, J. and Liebling, S. L., “Singularity formation in $2+1$ wave maps”, J. Math. Phys. 43 (2002) 678683 doi:10.1063/1.1418717.CrossRefGoogle Scholar
Ovchinnikov, Yu. N. and Sigal, I. M., “On collapse of wave maps”, Phys. D 240 (2011) 13111324 doi:10.1016/j.physd.2011.04.014.CrossRefGoogle Scholar
Peter, R. and Frauendiener, J., “Free versus constraint evolution of the $2+1$ equivariant wave map”, J. Phys. A 45 (2012) 055201; doi:10.1088/1751-8113/45/5/055201.CrossRefGoogle Scholar
Peter, R., “Numerical studies of geometric partial differential equations with symplectic methods”, Ph. D. Thesis, University of Otago, 2012.Google Scholar
Raphaël, P. and Rodnianski, I., “Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang–Mills problems”, Publ. Math. Inst. Hautes Études Sci. 115 (2012) 1122 doi:10.1007/s10240-011-0037-z.CrossRefGoogle Scholar
Sterbenz, J. and Tataru, D., “Regularity of wave maps in dimension $2+1$”, Comm. Math. Phys. 298 (2010) 231264 doi:10.1007/s00220-010-1062-3.CrossRefGoogle Scholar
Struwe, M., “Equivariant wave maps in two space dimensions”, Comm. Pure Appl. Math. 56 (2003) 815823 doi:10.1002/cpa.10074.CrossRefGoogle Scholar