Singularly perturbed problems often yield solutions with strong directional features,e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation.To this end we present a new robust error estimator for a singularly perturbed reaction-diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element meshes. The estimator is based on the solution of a local problem, and yields error bounds uniformly in the small perturbation parameter. The error estimation is efficient, i.e. a lower error bound holds. The error estimator is also reliable, i.e. an upper error bound holds, provided that the anisotropic mesh discretizes the problem sufficiently well. A numerical example supports the analysis of our anisotropic error estimator.