Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T02:47:22.096Z Has data issue: false hasContentIssue false

A posteriori error estimates for a nonconforming finite elementdiscretization of the heat equation

Published online by Cambridge University Press:  15 April 2005

Serge Nicaise
Affiliation:
Université de Valenciennes et du Hainaut Cambrésis, MACS, ISTV, 59313 Valenciennes Cedex 9, France. Serge.Nicaise@univ-valenciennes.fr; Nadir.Soualem@univ-valenciennes.fr
Nadir Soualem
Affiliation:
Université de Valenciennes et du Hainaut Cambrésis, MACS, ISTV, 59313 Valenciennes Cedex 9, France. Serge.Nicaise@univ-valenciennes.fr; Nadir.Soualem@univ-valenciennes.fr
Get access

Abstract

The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equationin $\mathbb{R}^d$ , d=2 or 3,using backward Euler's scheme. For this discretization, we derive a residual indicator, which usea spatial residual indicator based on thejumps of normal and tangential derivatives of the nonconformingapproximation and a time residual indicator based on the jump of broken gradients at each time step.Lower and upper bounds form the main results with minimal assumptions on the mesh.Numerical experiments and a space-time adaptive algorithm confirm the theoretical predictions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achdou, Y., Bernardi, C. and Coquel, F., A priori and a posteriori error analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 1742. CrossRef
Acosta, G. and Durán, R.G., The maximum angle condition for mixed and non-conforming elements, Application to the Stokes equations. SIAM J. Numer. Anal. 37 (1999) 1836. CrossRef
T. Apel, Anisotropic finite elements: Local estimates and applications. Adv. Numer. Math. Teubner, Stuttgart (1999).
Apel, T. and Nicaise, S., The inf-sup condition for some low order elements on anisotropic meshes. Calcolo 41 (2004) 89113. CrossRef
Apel, T., Nicaise, S. and Schröberl, J., A non-conforming finite element method with anisotropic mesh grading for the stokes problem in domains with edges. IMA J. Numer. Anal. 21 (2001) 843856. CrossRef
A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic problem. Preprint Laboratoire J.-L. Lions 01045, Université Paris 6 (2001).
A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of a nonlinear parabolic equation. (2004) (to appear).
Bernardi, C. and Métivet, B., Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425438.
Bernardi, C. and Verfürth, R., A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: M2AN 38 (2004) 437455. CrossRef
Brenner, P., Crouzeix, M. and Thomée, V., Single step methods for inhomogeneous linear differential equations in banach space. RAIRO Anal. Numér. 16 (1982) 526. CrossRef
P. Ciarlet, The finite element method for elliptic problems. North Holland (1996).
Clément, P., Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 2 (1975) 7784.
Creusé, E., Kunert, G. and Nicaise, S., A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations. Math. Models Methods Appl. Sci. 14 (2004) 12971341. CrossRef
Dari, E., Durán, R., Padra, C. and Vampa, V., A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 385400. CrossRef
V. Girault and P.-A. Raviart, Finite elements methods for Navier-Stokes equations, Theory and Algorithms. Springer Series in Computational Mathematics, Berlin (1986).
Johnson, C., Nie, Y.-Y. and Thomée, V., An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277291. CrossRef
Picasso, M., Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223237. CrossRef
Picasso, M., An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24 (2003) 13281355. CrossRef
Scott, L.R. and Zhang, S., Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483493. CrossRef
R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996).
Verfürth, R., Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695713. CrossRef
Verfürth, R., A posteriori error estimates for finite element discretization of the heat equation. Calcolo 40 (2003) 195212. CrossRef