We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is proved that the free topological vector space $\mathbb{V}([0,1])$ contains an isomorphic copy of the free topological vector space $\mathbb{V}([0,1]^{n})$ for every finite-dimensional cube $[0,1]^{n}$, thereby answering an open question in the literature. We show that this result cannot be extended from the closed unit interval $[0,1]$ to general metrisable spaces. Indeed, we prove that the free topological vector space $\mathbb{V}(X)$ does not even have a vector subspace isomorphic as a topological vector space to $\mathbb{V}(X\oplus X)$, where $X$ is a Cook continuum, which is a one-dimensional compact metric space. This is also shown to be the case for a rigid Bernstein set, which is a zero-dimensional subspace of the real line.
The Banach–Mazur separable quotient problem asks whether every infinite-dimensional Banach space $B$ has a quotient space that is an infinite-dimensional separable Banach space. The question has remained open for over 80 years, although an affirmative answer is known in special cases such as when $B$ is reflexive or even a dual of a Banach space. Very recently, it has been shown to be true for dual-like spaces. An analogous problem for topological groups is: Does every infinite-dimensional (in the topological sense) connected (Hausdorff) topological group $G$ have a quotient topological group that is infinite dimensional and metrisable? While this is known to be true if $G$ is the underlying topological group of an infinite-dimensional Banach space, it is shown here to be false even if $G$ is the underlying topological group of an infinite-dimensional locally convex space. Indeed, it is shown that the free topological vector space on any countably infinite $k_{\unicode[STIX]{x1D714}}$-space is an infinite-dimensional toplogical vector space which does not have any quotient topological group that is infinite dimensional and metrisable. By contrast, the Graev free abelian topological group and the Graev free topological group on any infinite connected Tychonoff space, both of which are connected topological groups, are shown here to have the tubby torus $\mathbb{T}^{\unicode[STIX]{x1D714}}$, which is an infinite-dimensional metrisable group, as a quotient group.
Let $L\left( X \right)$ be the free locally convex space over a Tychonoff space $X$. Then $L\left( X \right)$ is a $k$-space if and only if $X$ is a countable discrete space. We prove also that $L\left( D \right)$ has uncountable tightness for every uncountable discrete space $D$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.