Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T19:16:07.284Z Has data issue: false hasContentIssue false

Free Locally Convex Spaces and the k-space Property

Published online by Cambridge University Press:  20 November 2018

S. S. Gabriyelyan*
Affiliation:
Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva P.O. 653, Israel e-mail: saak@math.bgu.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $L\left( X \right)$ be the free locally convex space over a Tychonoff space $X$. Then $L\left( X \right)$ is a $k$-space if and only if $X$ is a countable discrete space. We prove also that $L\left( D \right)$ has uncountable tightness for every uncountable discrete space $D$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Arhangel’skii, A. V., Okunev, O. G., and Pestov, V. G., Free topological groups over metrizable spaces. Topology Appl. 33 (1989), no. 1, 6376. http://dx.doi.org/10.1016/0166-8641(89)90088-6 Google Scholar
[2] Banakh, T. and Zdomskyy, L., The topological structure of (homogeneous) spaces and groups with countable cs*-character. Appl. Gen. Topol. 5 (2004), no. 1, 2548.Google Scholar
[3] Engelking, R., General topology. (Polish), Mathematics Library, 47, PanstwoweWydawnictwo Naukowe,Warsaw, 1975.Google Scholar
[4] Flood, J., Free topological vector spaces. Ph. D. thesis, Australian National University, Canberra, 1975.Google Scholar
[5] Flood, J., Free locally convex spaces. Dissertationes Math CCXXI, PWN,Warczawa, 1984.Google Scholar
[6] Gabriyelyan, S., Kaĭkol, J., and Leiderman, A., The strong Pytkeev property for topological groups and topological vector spaces. http://prometeo2013058.blogs.upv.es/files/2014/02/sPp-MM.pdfGoogle Scholar
[7] Graev, M., Free topological groups. (Russian) Izvestiya Akad. Nauk SSSR Ser.Mat. 12 (1948), 279324; Topology and Topological Algebra. Translation Series 1, 8 (1962), 305364.Google Scholar
[8] Jarchow, H., Locally convex spaces. Mathematical Textbooks, B.G. Teubner, Stuttgart, 1981.Google Scholar
[9] Mack, J., Morris, S. A., and Ordman, E. T., Free topological groups and the projective dimension of a locally compact abelian groups. Proc. Amer. Math. Soc. 40 (1973), 303308. http://dx.doi.org/10.1090/S0002-9939-1973-0320216-6 Google Scholar
[10] Markov, A. A., On free topological groups. Dokl. Akad. Nauk SSSR 31 (1941), 299301.Google Scholar
[11] McPhail, C. E. and Morris, S. A., Identifying and distinguishing various varieties of abelian topological groups. Dissertationes Math. 458 (2008).Google Scholar
[12] Noble, N., k-groups and duality. Trans. Amer. Math. Soc. 151 (1970), 551561.Google Scholar
[13] Protasov, I. V., Maximal vector topologies. Topology Appl. 159 (2012), no. 9, 25102512. http://dx.doi.org/10.1016/j.topol.2011.10.021 Google Scholar
[14] Protasov, I. V. and Zelenyuk, E. G., Topologies on groups determined by sequences. Mathematical Studies Monograph Series, 4, VNTL, L’viv, 1999.Google Scholar
[15] Raĭkov, D. A., Free locally convex spaces for uniform spaces. (Russian) Mat. Sb. 63(105) (1964), 582590.Google Scholar
[16] Smith-Thomas, B. V., Free topological groups. General Topology and Appl. 4 (1974), 5172. http://dx.doi.org/10.1016/0016-660X(74)90005-1 Google Scholar
[17] Steenrod, N. E., A convenient category of topological spaces. Michigan Math. J. 14 (1967), 133152. http://dx.doi.org/10.1307/mmj/1028999711 Google Scholar
[18] Tkachenko, M. G., On completeness of free abelian topological groups. Soviet Math. Dokl. 27 (1983), 341345.Google Scholar
[19] Uspenskiĭ, V. V., On the topology of free locally convex spaces. Soviet Math. Dokl. 27 (1983), 781785.Google Scholar
[20] Uspenskiĭ, V. V., Free topological groups of metrizable spaces. Math. USSR-Izv. 37 (1991), no. 3, 657680.Google Scholar