We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Radiotherapy treatment delivery is evaluated by a pre-treatment patient-specific quality assurance (PSQA) procedure to ensure the patient receives an accurate radiation dose. The current PSQA practice by using conventional phantoms requires more set-up time and cost of purchasing the tools. Therefore, this study aimed to investigate the efficiency of an electronic portal imaging device (EPID) of linear accelerator (LINAC) as a PSQA tool for volumetric-modulated arc therapy (VMAT) planning technique for nasopharyngeal carcinoma (NPC) treatment delivery.
Methods:
A NPC VMAT plan on a Rando phantom was performed by following the Radiation Therapy Oncology Group (RTOG) 0615 protocol. The gamma passing rate of the EPID and PSQA phantom (ArcCHECK) were compared among the gamma criteria of 3%/3 mm, 2%/2 mm and 1%/1 mm, respectively.
Results:
Both EPID and ArcCHECK phantom had distinguishable gamma passing rates in 3%/3 mm and 2%/2 mm with a difference of 0·87% and 0·30%, respectively. Meanwhile, the EPID system had a lower gamma passing rate than the ArcCHECK phantom in 1%/1 mm (21·23% difference). Furthermore, the sensitivity of the EPID system was evaluated and had the largest deviation in gamma passing rate from the reference position in gamma criteria of 2%/2 mm (41·14%) compared to the 3%/3 mm (25·45%) and 1%/1 mm (31·78%), discretely. The best fit line of the linear regression model for EPID was steeper than the ArcCHECK phantom in 3%/3 mm and 2%/2 mm, and vice versa in gamma criteria of 1%/1 mm. This indicates that the EPID had a higher sensitivity than the ArcCHECK phantom in 3%/3 mm and 2%/2 mm but less sensitivity in 1%/1 mm.
Conclusions:
The EPID system was efficient in performing the PSQA test of VMAT treatment in HUSM with the gamma criteria of 3%/3 mm and 2%/2 mm.
The main objective of this study is to assure the quality of cervical cancer treatment plans using an electronic portal imaging device (EPID) in RapidArc techniques.
Materials and Methods:
Fifteen cases of cervical cancer patients undergoing RapidArc technique were selected to evaluate the quality assurance (QA) of their treatment. The computed tomography (CT) of each patient was obtained with 3-mm-slice thickness and transferred to the Eclipse treatment planning system. The prescribed dose (PD) of 50·4 Gy with 1·8 Gy per fraction to planning target volume (PTV) was used for each patient. The aim of treatment planning was to achieve 95% of PD to cover 97%, and dose to the PTV should not receive 105% of the PD. All RapidArc plans were created using the AAA algorithm and treated on Varian DHX using 6 MV photon beam, with two full arcs. Gamma analysis was used to evaluate the quality of the treatment plans with accepting criteria of 95% at 3%/3 mm.
Results:
In this study, maximum and average gamma values were 2·53 ± 0·409 and 0·195 ± 0·059 showing very small deviation and indicating the smaller difference between both predicted and portal doses. Gamma Area changes from > 0·8 to > 1·2. SD increased to 5·4% and mean standard error increased to 4·67%.
Conclusion:
On the basis of these outcomes, we can summarise that the EPID is a useful tool for QA in standardising and evaluating RapidArc treatment plans of cervical cancer in routine clinical practice.
In advanced radiotherapy techniques such as intensity-modulated radiation therapy (IMRT), the quality assurance (QA) process is essential. The aim of the study was to assure the treatment planning dose delivered during delivery of complex treatment plans. The QA standard is to perform patient-specific comparisons between planned doses and doses measured in a phantom.
Materials and method
The Delta 4 phantom (Scandidos, Uppsala, Sweden) has been used in this study. This device consists of diode matrices in two orthogonal planes inserted in a cylindrical acrylic phantom. Each diode is sampled per beam pulse so that the dose distribution can be evaluated on segment-by-segment, beam-by-beam, or as a composite plan from a single set of measurements. Ninety-five simple and complex radiotherapy treatment plans for different pathologies, planned using a treatment planning system (TPS) were delivered to the QA device. The planned and measured dose distributions were then compared and analysed. The gamma index was determined for different pathologies.
Results
The evaluation was performed in terms of dose deviation, distance to agreement and gamma index passing rate. The measurements were in excellent agreement between with the calculated dose of the TPS and the QA device. Overall, good agreement was observed between measured and calculated doses in most cases with gamma values above 1 in >95% of measured points. Plan results for each test met the recommended dose goals.
Conclusion
The delivery of IMRT and volumetric-modulated arc therapy (VMAT) plans was verified to correspond well with calculated dose distributions for different pathologies. We found the Delta 4 device is accurate and reproducible. Although Delta4 appears to be a straightforward device for measuring dose and allows measure in real-time dosimetry QA, it is a complex device and careful quality control is required before its use.
Electronic portal imaging device (EPID) offers high-resolution digital image that can be compared with a predicted portal dose image. A very common method to quantitatively compare a measured and calculated dose distribution that is routinely used for quality assurance (QA) of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy treatment plans is the evaluation of the gamma index. The purpose of this work was to evaluate the gamma passing rate (%GP), maximum gamma (γmax), average gamma (γave), maximum dose difference (DDmax) and the average dose difference (DDave) for various regions of interest using Varian’s implementation of three absolute dose gamma calculation techniques of improved, local, and combined improved and local.
Methods and materials
We analyzed 232 portal dose images from 100 prostate cancer patients’ VMAT plans obtained using the Varian EPID on TrueBeam Linacs.
Results
Our data show that the %GP, γmax and γave depend on the gamma calculation method and the acceptance criteria. Higher %GP values were obtained compared with both our current institutional action level and the American Association of Physicists in Medicine Task Group 119 recommendations.
Conclusions
The results of this study can be used to establish stricter action levels for pre-treatment QA of prostate VMAT plans. A stricter 3%/3 mm improved gamma criterion with a passing rate of 97% or the 2%/2 mm improved gamma criterion with a passing rate of 95% can be achieved without additional measurements or configurations.
Due to the increased degree of modulation and complexity of volumetric-modulated arc therapy (VMAT) plans, it is necessary to have a pre-treatment patient-specific quality assurance (QA) programme. The gamma index is commonly used to quantitatively compare two dose distributions. In this study we investigated the sensitivity of single- and multi-gamma criteria techniques to detect multileaf collimator (MLC) positioning errors using the Varian TrueBeam Electronic Portal Imaging DeviceTM (EPID) dosimetry and the ArcCHECKTM device.
Materials and methods
All active MLC positions of seven intact prostate patients VMAT plans were randomly changed with a mean value of 0.25, 0.5, 1 and 2 mm and a standard deviation of 0.1 mm on 25, 50, 75 and 100% of the control points. The change in gamma passing rates of six gamma criteria of 3%/3 mm, 3%/2 mm, 3%/1 mm, 2%/2 mm, 2%/1 mm and 1%/1 mm were analysed individually (single-gamma criterion) and as a group (multi-gamma criteria) as a function of the simulated errors. We used the improved and global gamma calculation algorithms with a low dose threshold of 10% in the EPID and ArcCHECK software, respectively. The changes in the planning target volume dose distributions and the organs at risk due to the MLC positioning errors were also studied.
Results
When 25, 50, 75 and 100% of the control points were modified by the introduction of the simulated errors, the smallest detectable errors with the EPID were 2, 1, 0.5 and 0.5 mm, respectively, using the multi-gamma criteria technique. Similarly for the single-gamma criteria technique errors as small as 2, 1, 1 and 1 mm applied to 25, 50, 75 and 100% of the control points, respectively, were detectable using a 2%/2 mm criterion. However, the smallest detectable errors with the ArcCHECK when using the multi-gamma criteria technique were 2, 2 and 1 mm when MLC errors were applied on 50, 75 and 100% of the control points. When only 25% of the control points were affected the ArcCHECK were unable to detect any of the errors applied. No noticeable difference was observed in the sensitivity using the single- or the multi-gamma criteria techniques with the ArcCHECK.
Conclusion
The Varian TrueBeam EPID dosimetry shows a higher sensitivity in detecting MLC positioning errors compared with the ArcCHECK regardless of using the single- or the multi-gamma criteria techniques. Higher sensitivity was observed using the multi-gamma criteria technique compared with the single-criterion technique when using the EPID.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.