Published online by Cambridge University Press: 15 November 2018
In advanced radiotherapy techniques such as intensity-modulated radiation therapy (IMRT), the quality assurance (QA) process is essential. The aim of the study was to assure the treatment planning dose delivered during delivery of complex treatment plans. The QA standard is to perform patient-specific comparisons between planned doses and doses measured in a phantom.
The Delta 4 phantom (Scandidos, Uppsala, Sweden) has been used in this study. This device consists of diode matrices in two orthogonal planes inserted in a cylindrical acrylic phantom. Each diode is sampled per beam pulse so that the dose distribution can be evaluated on segment-by-segment, beam-by-beam, or as a composite plan from a single set of measurements. Ninety-five simple and complex radiotherapy treatment plans for different pathologies, planned using a treatment planning system (TPS) were delivered to the QA device. The planned and measured dose distributions were then compared and analysed. The gamma index was determined for different pathologies.
The evaluation was performed in terms of dose deviation, distance to agreement and gamma index passing rate. The measurements were in excellent agreement between with the calculated dose of the TPS and the QA device. Overall, good agreement was observed between measured and calculated doses in most cases with gamma values above 1 in >95% of measured points. Plan results for each test met the recommended dose goals.
The delivery of IMRT and volumetric-modulated arc therapy (VMAT) plans was verified to correspond well with calculated dose distributions for different pathologies. We found the Delta 4 device is accurate and reproducible. Although Delta4 appears to be a straightforward device for measuring dose and allows measure in real-time dosimetry QA, it is a complex device and careful quality control is required before its use.
Cite this article: Srivastava RP, De Wagter C (2019) Clinical experience using Delta 4 phantom for pretreatment patient-specific quality assurance in modern radiotherapy. Journal of Radiotherapy in Practice18: 210–214. doi: 10.1017/S1460396918000572