A set of linear conditions on item response functions is derived that guarantees identical observed-score distributions on two test forms. The conditions can be added as constraints to a linear programming model for test assembly that assembles a new test form to have an observed-score distribution optimally equated to the distribution on an old form. For a well-designed item pool and items fitting the IRT model, use of the model results into observed-score pre-equating and prevents the necessity of post hoc equating by a conventional observed-score equating method. An empirical example illustrates the use of the model for an item pool from the Law School Admission Test.