We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a quantitative isolation property of the lifts of properly immersed geodesic planes in the frame bundle of a geometrically finite hyperbolic $3$-manifold. Our estimates are polynomials in the tight areas and Bowen–Margulis–Sullivan densities of geodesic planes, with degree given by the modified critical exponents.
We give a finitary criterion for the convergence of measures on non-elementary geometrically finite hyperbolic orbifolds to the unique measure of maximal entropy. We give an entropy criterion controlling escape of mass to the cusps of the orbifold. Using this criterion, we prove new results on the distribution of collections of closed geodesics on such an orbifold, and as a corollary, we prove the equidistribution of closed geodesics up to a certain length in amenable regular covers of geometrically finite orbifolds.
In this paper, we obtain several results on the commensurability of two Kleinian groups and their limit sets. We prove that two finitely generated subgroups G1 and G2 of an infinite co-volume Kleinian group G⊂Isom(H3) having Λ(G1)=Λ(G2) are commensurable. In particular, we prove that any finitely generated subgroup H of a Kleinian group G⊂Isom(H3) with Λ(H)=Λ(G) is of finite index if and only if H is not a virtually fibered subgroup.
In this paper we give the definition of a meromorphic function which is geometrically finite and investigate some properties of geometrically finite meromorphic functions and the Lebesgue measure of their Julia sets.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.