Parasites are detrimental to host fitness and therefore should strongly select for host defence mechanisms. Yet, hosts vary considerably in their observed parasite loads. One notable source of inter-individual variation in parasitism is host sex. Such variation could be caused by the immunomodulatory effects of gonadal steroids. Here we assess the influence of gonadal steroids on the ability of guppies (Poecilia reticulata) to defend themselves against a common and deleterious parasite (Gyrodactylus turnbulli). Adult male guppies underwent 31 days of artificial demasculinization with the androgen receptor-antagonist flutamide, or feminization with a combination of flutamide and the synthetic oestrogen 17 β-estradiol, and their parasite loads were compared over time to untreated males and females. Both demasculinized and feminized male guppies had lower G. turnbulli loads than the untreated males and females, but this effect appeared to be mainly the result of demasculinization, with feminization having no additional measurable effect. Furthermore, demasculinized males, feminized males and untreated females all suffered lower Gyrodactylus-induced mortality than untreated males. Together, these results suggest that androgens reduce the ability of guppies to control parasite loads, and modulate resistance to and survival from infection. We discuss the relevance of these findings for understanding constraints on the evolution of resistance in guppies and other vertebrates.