We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
These extended notes give an introduction to the theory of finite group schemes over an algebraically closed field, with minimal prerequisites. They conclude with a brief survey of the inverse Galois problem for automorphism group schemes.
This chapter provides an in-depth study of composition algebras over commutative rings, which we carry out in the more general framework of conic algebras (called quadratic algebras or algebras of degree 2 by other authors). We present the Cayley–Dickson construction and define composition algebras as unital nonassociative algebras that are projective as modules and allow a non-singular quadratic form permitting composition. We use this construction to obtain first examples of octonion algebras more general than the Graves–Cayley octonions and to derive structure theorems for arbitrary composition algebras. Specializing, it is shown that all composition algebras of rank at least 2 over an LG ring arise from an appropriate quadratic étale algebra by the Cayley–Dickson construction. Other examples of octonion algebras are obtained using ternary hermitian spaces. We address the norm equivalence problem, which asks whether composition algebras are classified by their norms and has an affirmative answer over LG rings but not in general. After a short excursion into affine (group) schemes, we conclude the chapter by showing that arbitrary composition algebras are split by étale covers.
In most of this book, we have studied Albert and octonion algebras. In this chapter, we connect those with the theory of semi-simple affine group schemes, especially those of type E6, F4, and G2. As part of this effort, we give an introduction to non-abelian flat cohomology and its applications to descent. We leverage this together with known results about affine group schemes such as Gross’s mass formula to classify the Albert algebras over the integers, a recently discovered result.
In this article, we establish the Grothendieck–Serre conjecture over valuation rings: for a reductive group scheme $G$ over a valuation ring $V$ with fraction field $K$, a $G$-torsor over $V$ is trivial if it is trivial over $K$. This result is predicted by the original Grothendieck–Serre conjecture and the resolution of singularities. The novelty of our proof lies in overcoming subtleties brought by general nondiscrete valuation rings. By using flasque resolutions and inducting with local cohomology, we prove a non-Noetherian counterpart of Colliot-Thélène–Sansuc's case of tori. Then, taking advantage of techniques in algebraization, we obtain the passage to the Henselian rank-one case. Finally, we induct on Levi subgroups and use the integrality of rational points of anisotropic groups to reduce to the semisimple anisotropic case, in which we appeal to properties of parahoric subgroups in Bruhat–Tits theory to conclude. In the last section, by using extension properties of reflexive sheaves on formal power series over valuation rings and patching of torsors, we prove a variant of Nisnevich's purity conjecture.
We consider the distribution of $p$-power group schemes among the torsion of abelian varieties over finite fields of characteristic $p$, as follows. Fix natural numbers $g$ and $n$, and let ${\it\xi}$ be a non-supersingular principally quasipolarized Barsotti–Tate group of level $n$. We classify the $\mathbb{F}_{q}$-rational forms ${\it\xi}^{{\it\alpha}}$ of ${\it\xi}$. Among all principally polarized abelian varieties $X/\mathbb{F}_{q}$ of dimension $g$ with $X[p^{n}]_{\bar{\mathbb{F}}_{q}}\cong {\it\xi}_{\bar{\mathbb{F}}_{q}}$, we compute the frequency with which $X[p^{n}]\cong {\it\xi}^{{\it\alpha}}$. The error in our estimate is bounded by $D/\sqrt{q}$, where $D$ depends on $g$, $n$, and $p$, but not on ${\it\xi}$.
Let R be a local Artin ring with maximal ideal $\frak m$ and residue class field of characteristic p > 0. We show that every finite flat group scheme over R is annihilated by its rank, whenever $\frak m$p = p$\frak m$ = 0. This implies that any finite flat group scheme over an Artin ring the square of whose maximal ideal is zero, is annihilated by its rank.
Let A$^′$be a complete characteristic (0,p) discrete valuation ring with absolute ramification degree e and a perfect residue field. We are interested in studying the category${\mathcal F}$${\mathcal F}$$_A$$_′$of finite flat commutative group schemes over A$^′$withp-power order. When e= 1, Fontaine formulated the purely ’linear algebra‘ notion of a finite Honda system over A$^′$and constructed an anti-equivalence of categories between${\mathcal F}$${\mathcal F}$$_A$$_′$and the category of finite Honda systems over A$^′$ when p< 2. We generalize this theory to the case e≤ − 1.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.