We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We categorify the inclusion–exclusion principle for partially ordered topological spaces and schemes to a filtration on the derived category of sheaves. As a consequence, we obtain functorial spectral sequences that generalize the two spectral sequences of a stratified space and certain Vassiliev-type spectral sequences; we also obtain Euler characteristic analogs in the Grothendieck ring of varieties. As an application, we give an algebro-geometric proof of Vakil and Wood's homological stability conjecture for the space of smooth hypersurface sections of a smooth projective variety. In characteristic zero this conjecture was previously established by Aumonier via topological methods.
We show that a sufficiently general hypersurface of degree d in $\mathbb {P}^n$ admits a toric Gröbner degeneration after linear change of coordinates if and only if $d\leq 2n-1$.
A famous problem in birational geometry is to determine when the birational automorphism group of a Fano variety is finite. The Noether–Fano method has been the main approach to this problem. The purpose of this paper is to give a new approach to the problem by showing that in every positive characteristic, there are Fano varieties of arbitrarily large index with finite (or even trivial) birational automorphism group. To do this, we prove that these varieties admit ample and birationally equivariant line bundles. Our result applies the differential forms that Kollár produces on $p$-cyclic covers in characteristic $p > 0$.
We prove the generic Torelli theorem for hypersurfaces in $\mathbb {P}^{n}$ of degree $d$ dividing $n+1$, for $d$ sufficiently large. Our proof involves the higher-order study of the variation of Hodge structure along particular one-parameter families of hypersurfaces that we call ‘Schiffer variations.’ We also analyze the case of degree $4$. Combined with Donagi's generic Torelli theorem and results of Cox and Green, this shows that the generic Torelli theorem for hypersurfaces holds with finitely many exceptions.
Building on work of Segre and Kollár on cubic hypersurfaces, we construct over imperfect fields of characteristic
$p\geq 3$
particular hypersurfaces of degree p, which show that geometrically rational schemes that are regular and whose rational points are Zariski dense are not necessarily unirational. A likewise behavior holds for certain cubic surfaces in characteristic
$p=2$
.
We prove a topological rigidity theorem for closed hypersurfaces of the Euclidean sphere and of an elliptic space form. It asserts that, under a lower bound hypothesis on the absolute value of the principal curvatures, the hypersurface is diffeomorphic to a sphere or to a quotient of a sphere by a group action. We also prove another topological rigidity result for hypersurfaces of the sphere that involves the spherical image of its usual Gauss map.
We study various measures of irrationality for hypersurfaces of large degree in projective space and other varieties. These include the least degree of a rational covering of projective space, and the minimal gonality of a covering family of curves. The theme is that positivity properties of canonical bundles lead to lower bounds on these invariants. In particular, we prove that if $X\subseteq \mathbf{P}^{n+1}$ is a very general smooth hypersurface of dimension $n$ and degree $d\geqslant 2n+1$, then any dominant rational mapping $f:X{\dashrightarrow}\mathbf{P}^{n}$ must have degree at least $d-1$. We also propose a number of open problems, and we show how our methods lead to simple new proofs of results of Ran and Beheshti–Eisenbud concerning varieties of multi-secant lines.
Let (R,m) be a Noetherian local ring and UR=Spec(R)−{m} be the punctured spectrum of R. Gabber conjectured that if R is a complete intersection of dimension three, then the abelian group Pic(UR) is torsion-free. In this note we prove Gabber’s statement for the hypersurface case. We also point out certain connections between Gabber’s conjecture, Van den Bergh’s notion of non-commutative crepant resolutions and some well-studied questions in homological algebra over local rings.
Let M be an n-dimensional space-like hypersurface in a locally symmetric Lorentz space, with n(n−1)R=κH(κ>0) and satisfying certain additional conditions on the sectional curvature. Denote by S and H the squared norm of the second fundamental form and the mean curvature of M, respectively. We show that if the mean curvature is nonnegative and attains its maximum on M, then:
(1) if H2<4(n−1)c/n2, M is totally umbilical;
(2) if H2=4(n−1)c/n2, M is totally umbilical or is an isoparametric hypersurface;
(3) if H2>4(n−1)c/n2 and S satisfies some pinching conditions, M is totally umbilical or is an isoparametric hypersurface.
This paper studies topological and metric rigidity theorems for hypersurfaces in a Euclidean sphere. We first show that an $n({\geq}\,2)$-dimensional complete connected oriented closed hypersurface with non-vanishing Gauss–Kronecker curvature immersed in a Euclidean open hemisphere is diffeomorphic to a Euclidean $n$-sphere. We also show that an $n({\geq}\,2)$-dimensional complete connected orientable hypersurface immersed in a unit sphere $S^{n+1}$ whose Gauss image is contained in a closed geodesic ball of radius less than $\pi/2$ in $S^{n+1}$ is diffeomorphic to a sphere. Finally, we prove that an $n({\geq}\,2)$-dimensional connected closed orientable hypersurface in $S^{n+1}$ with constant scalar curvature greater than $n(n-1)$ and Gauss image contained in an open hemisphere is totally umbilic.
In this paper we adopt the hyperboloid in Minkowski space as the model of hyperbolic space. We define the hyperbolic Gauss map and the hyperbolic Gauss indicatrix of a hypersurface in hyperbolic space. The hyperbolic Gauss map has been introduced by Ch. Epstein [J. Reine Angew. Math. 372 (1986) 96–135] in the Poincaré ball model, which is very useful for the study of constant mean curvature surfaces. However, it is very hard to perform the calculation because it has an intrinsic form. Here, we give an extrinsic definition and we study the singularities. In the study of the singularities of the hyperbolic Gauss map (indicatrix), we find that the hyperbolic Gauss indicatrix is much easier to calculate. We introduce the notion of hyperbolic Gauss–Kronecker curvature whose zero sets correspond to the singular set of the hyperbolic Gauss map (indicatrix). We also develop a local differential geometry of hypersurfaces concerning their contact with hyperhorospheres.
For n≥2, a hypersurface in the open unit ball Bn in is constructed which satisfies the generalized Blaschke condition and is a uniqueness set for all Hp(Bn) with p>0. If n≥3, the hypersurface can be chosen to have finite area.