We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This is a prospective study to evaluate the dosimetric benefits of treatment plan adaptation for patients who had undergone repeat computed tomography (ReCT)and re-planning due to treatment-induced anatomical changes during radiotherapy.
Materials and Methods
This study involved five head and neck cancer patients who had their treatment plan modified, based on weekly thrice imaging protocol. Impact of mid-course imaging was assessed in patients using ReCT and cone beam computed tomography (CBCT)-based dose verification. Patients were imaged, apart from their initial CT, during the course of their radiation therapy with a ReCT and on board imager CBCT (Varian Medical Systems Inc., Palo Alto, CA, USA). Each CBCT/CT series was rigidly registered to the initial CT in the treatment planning system Eclipse (Varian Medical Systems Inc.) using bony landmarks. The structures were copied to the current CBCT/CT series and, where needed, manually edited slicewise. The dose distribution from the treatment plan was viewed as of the current anatomy by applying the treatment plan the CBCT/CT series, and studying the corresponding dose–volume histograms for organs at risk doses.
Results
The reduction of parotid volumes due to weight loss was observed in all patients, which means an increase in predicted mean doses of parotid when initial CT plan was re-calculated on ReCT and CBCT (Table 1). This explains the necessity of adaptive planning. The predicted mean dose of parotid glands was increased and constraints to spinal cord and skin were exceeded, so re-planning was performed.
Conclusions
The CBCT is a useful tool to view anatomic changes in patients and get an estimate of their impact on dose distribution. Re-planning based on imaging in head and neck patients during the course of radiotherapy is mandatory to reduce side effects.
Although manual adjustment of automatic cone beam computed tomography (CBCT) matching may improve the target coverage in certain points of interest, concerns exist that this may lead to dosimetric uncertainties which would negate the theoretical benefit of this approach. The objective of this study is to evaluate the dosimetric impact of manual adjustments made after automatic bony registration on CBCT in prostate patients.
Methods
A total of 50 CBCT datasets of ten high-risk prostate cancer patients were randomly chosen. Each CBCT dataset was registered three times. Method (A): Automatic registration, Method (M1): Manual adjustment carried out by two experienced radiation therapists, Method (M2): Manual adjustment carried out by different radiation therapists with varying levels of experience. The clinical target volume (CTV), planning target volume (PTV), the bladder and the rectum were subsequently contoured on each CBCT dataset by a radiation oncologist blinded to the registration methods. The absolute difference of various dosimetric parameters were then analysed and compared with the original planning doses. A comparison of the three matching methods employed was also carried out.
Results
There was a statistically significant difference in the magnitude of move taken in the inferior superior direction between M1 and M2 method. There were no significant differences observed in any of the dosimetric parameters examined in relation to the rectum, bladder or CTV. The only significant difference observed was the volume of PTV covered by the prescription isodose (95%) which was statistically significant lower in method A compared with both M1 and M2. There was no difference observed between M1 and M2 methods. The mean duration of the automated registration and subsequent analysis was 64 seconds compared with 91 seconds for automated registrations which included the additional manual adjustment.
Findings
CBCT-based manual adjustments of automated bony-based registrations during the image-guided radiotherapy verification of prostate cancer patients can improve PTV coverage without impacting negatively on the doses received by the organs at risk. This strategy is associated with a small increase in overall treatment time.
Stereotactic-fractionated radiotherapy and radiosurgery (RS) for benign and malignant intracranial lesions relies on a very high degree of accuracy in dose alignment due to the ablative dose delivered, and therefore requires a high-precision image guidance modality. The aim of this review is to investigate the localisation and verification accuracy performance of ExacTrac (ET) and Novalis Tx System.
Materials and methods
A systematic review of the database Science Direct was carried out using search terms ‘stereotactic radiotherapy (SRT)’ and ‘ET’. All articles before 2000 were excluded. Only articles that involved intracranial lesions, with the exception of one article, were included in the final review.
Results
Results from gold standard Hidden Target Tests and patient data show that patient position can be reproduced within 1·0 mm with the use of ET imaging. In addition, the 6 degrees of freedom algorithm function of ET allows for better translational accuracy as well optimal positioning when rotations are corrected for. Studies showed excellent correlation (p<0·01) between bony ET images and cone beam computed tomography (CBCT) soft tissue registration, evidencing the safe reliance of bony anatomy for image guidance via ET. Shifts were found to be comparable between CBCT and ET.
Conclusion
There is the need for regular calibration to prevent systematic errors and potential geographic miss. However, due to ET’s additional benefits, including reduced concomitant dose and faster imaging time, ET is the superior image guidance modality for RS/SRT in the treatment of intracranial lesions.
This study was conducted for establishing inherent uncertainty in the shift determination by X-ray volumetric imaging (XVI) and calculating margins due to this inherent uncertainty using van Herk formula.
Material and methods
The study was performed on the XVI which was cone-beam computed tomography integrated with the Elekta AxesseTM linear accelerator machine having six degree of freedom enabled HexaPOD couch. Penta-Guide phantom was used for inherent translational and rotational shift determination by repeated imaging. The process was repeated 20 times a day without moving the phantom for 30 consecutive working days. The measured shifts were used for margins calculation using van Herk formula.
Results
The mean standard deviations were calculated as 0·05, 0·05, 0·06 mm in the three translational (x, y and z) and 0·05°, 0·05°, 0·05° in the three rotational axes (about x, y, z). Paired sample t-test was performed between the mean values of translational shifts (x, y, z) and rotational shifts. The systematic errors were found to be 0·03, 0·04 and 0·03 mm while the random errors were 0·05, 0·06 and 0·06 mm in the lateral, cranio-caudal and anterio-posterior directions, respectively. For the rotational shifts, the systematic errors were 0·02, 0·03 and 0·03 and the random errors were 0·06, 0·05 and 0·05 in the pitch, roll and yaw directions, respectively.
Conclusion
Our study concluded that there was an inherent uncertainty associated with the XVI tools, on the basis of these six-dimensional shifts, margins were calculated and recorded as a baseline for the quality assurance (QA) programme for XVI imaging tools by checking its reproducibility once in a year or after any major maintenance in hardware or upgradation in software. Although the shift determined was of the order of submillimetre order, still that shift had great significance for the image quality control of the XVI tools. Every departments practicing quality radiotherapy with such imaging tools should establish their own baseline value of inherent shifts and margins during the commissioning and must use an important QA protocol for the tools.
To evaluate and develop an image-guided radiotherapy (IGRT) protocol for the effective treatment of prostate and pelvic lymph nodes.
Methods and materials
This study comprised of nine patients receiving radiotherapy for node negative prostate cancer, who had a pair of planar kV images taken for 37 treatment fractions. The positioning accuracy for both implanted fiducial markers and pelvic bony anatomy (surrogate for pelvic node position) was calculated using random and systematic errors. Appropriate margins were also determined. All patients followed a strict bladder and bowel protocol before computed tomography planning and treatment.
Results
In total, 292 sets of images were used for fiducial marker and pelvic bone registration. A discrepancy of >5 mm between the fiducial markers and the anatomical pelvic bone was seen in 4% of treatment sessions. The maximum displacement observed between the fiducial match and the bone match was 7, 10 and 4 mm in the A/P (anterior/posterior), S/I (superior/inferior) and R/L (right/left) directions, respectively.
Conclusion
The margins used in combination with an online IGRT strategy ensure both the fiducial match and the bone match correlate within 5 mm thus allows good coverage of both prostate and nodal target volumes. It is essential that this is combined with a strict bladder and rectal preparation protocol to ensure accuracy and reproducibility.
Increasing usage of magnetic resonance imaging (MRI) in radiotherapy (RT) and the advent of MRI-based image-guided radiotherapy (IGRT) suggests a need for additional training within the RT profession. This critical review aimed to identify potential gaps in knowledge by evaluating the current skill base in MRI among therapeutic radiographers as evidenced by published research.
Methods
Papers related to MRI usage were retrieved. Topic areas included outlining, planning and IGRT; diagnosis, follow-up and staging-related papers were excluded. After selection and further text analysis, papers were grouped by tumour site and year of publication.
Results
The literature search and filtering resulted in a total of 123 papers, of which 66 were related to ‘outlining’, 37 to ‘planning’ and 20 to ‘IGRT’. The main sites of existing MRI expertise in RT were brain, central nervous system, prostate, and head and neck tumours. Expertise was clearly related to regions where MRI offered improved soft-tissue contrast. MRI studies within RT have been published from 2007 onwards at a steadily increasing rate.
Conclusion
Current use of MRI in RT is mainly restricted to sites where MRI offers a considerable imaging advantage over computed tomography. Given the changing use of MRI for image guidance, emerging therapeutic radiographers will require training in MRI interpretation across a wider range of anatomical regions.
It is unclear whether body mass index (BMI) is a useful measurement for examining prostate motion. Patient’s subcutaneous adipose tissue thickness (SAT) and weight has been shown to correlate with prostate shifts in the left/right direction. We sought to analyse the relationship between BMI and interfraction prostate movement in order to determine planning target volume (PTV) margins based on patient BMI.
Materials and methods
In all, 38 prostate cancer patients with three implanted gold fiducial markers in their prostate were recruited. Height, mass and SAT were measured, and the extent of interfraction prostate movement in the left/right, superior/inferior and anterior/posterior directions was recorded during each daily fiducial marker-based image-guided radiotherapy treatment. Mean corrective shift in each direction for each patient, along with BMI values, were calculated.
Results
The median BMI value was 28·4 kg/m2 (range 21·4–44·7). Pearson’s product-moment correlation analysis showed no significant relationship between BMI, mass or SAT and the extent of prostate movement in any direction. Linear regression analysis also showed no relationship between any of the patient variables and the extent of prostate movement in any direction (BMI: R2=0·006 (ρ=0·65), 0·002 (ρ=0·80) and 0·001 (ρ=0·86); mass: R2=0·001 (ρ=0·87), 0·010 (ρ=0·54) and 0·000 (ρ=0·99); SAT: R2=0·012 (ρ=0·51), 0·013 (ρ=0·50) and 0·047 (ρ=0·19) for shifts in the X, Y and Z axis, respectively). Patients were grouped according to BMI, as BMI<30 (n=25, 65·8%) and BMI≥30 (n=13, 34·2%). A two-tailed t-test showed no significant difference between the mean prostate shifts for the two groups in any direction (ρ=0·320, 0·839 and 0·325 for shifts in the X, Y and Z axis, respectively).
Findings
BMI is not a useful parameter for determining individualised PTV margins. Gold fiducial marker insertion should be used as standard to improve treatment accuracy.
The purpose of this study was to audit positioning errors during bladder image-guided radiotherapy (IGRT) and quantify survival outcomes.
Materials and methods
We carried out a retrospective review of 141 patients treated between March 2007 and July 2010 with three-dimensional conformal radiotherapy. An offline imaging protocol using kV cone beam computed tomography (CBCT) was used. Positioning errors, clinical interventions and re-planning rates were quantified. Cancer outcomes and survival were collected by review of patient notes and a registry search.
Results
Among all, 43% of the patients required no intervention. Isocentre corrections were used for systematic bony set-up error in 13% and to improve bladder coverage in 28%. Clinical interventions to improve bladder coverage were required in 16% of the patients and repeat computed tomography planning in a further 16%. Overall, 44% of the patients demonstrated some form of organ deformation that would have resulted in inadequate dose to the bladder or significant overdose to an organ at risk if not corrected for. Post-treatment check cystoscopy was undertaken in 107 patients (76%) with 72 noted to have a complete response. Overall survival was 47·8% at 3 years.
Conclusions
Organ deformation during radiotherapy for bladder cancer is a significant problem for over 40% of patients. Strategies to compensate are essential to ensure optimal plan delivery.
This study evaluated the impact of a daily and weekly image-guided radiotherapy protocols in reducing setup errors and setting of appropriate margins in head and neck cancer patients.
Materials and methods
Interfraction and systematic shifts for the hypothetical day 1–3 plus weekly imaging were extrapolated from daily imaging data from 31 patients (964 cone beam computed tomography (CBCT) scans). In addition, residual setup errors were calculated by taking the average shifts in each direction for each patient based on the first three shifts and were presumed to represent systematic setup error. The clinical target volume (CTV) to planning target volume (PTV) margins were calculated using van Herk formula and analysed for each protocol.
Results
The mean interfraction shifts for daily imaging were 0·8, 0·3 and 0·5 mm in the S-I (superior-inferior), L-R (left-right) and A-P (anterior-posterior) direction, respectively. On the other hand the mean shifts for day 1–3 plus weekly imaging were 0·9, 1·8 and 0·5 mm in the S-I, L-R and A-P direction, respectively. The mean day 1–3 residual shifts were 1·5, 2·1 and 0·7 mm in the S-I, L-R and A-P direction, respectively. No significant difference was found in the mean setup error for the daily and hypothetical day 1–3 plus weekly protocol. However, the calculated CTV to PTV margins for the daily interfraction imaging data were 1·6, 3·8 and 1·4 mm in the S-I, L-R and A-P directions, respectively. Hypothetical day 1–3 plus weekly resulted in CTV–PTV margins of 5, 4·2 and 5 mm in the S-I, L-R and A-P direction.
Conclusions
The results of this study show that a daily CBCT protocol reduces setup errors and allows setup margin reduction in head and neck radiotherapy compared to a weekly imaging protocol.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.