We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this short note, we deal with complete noncompact expanding and steady Ricci solitons of dimension $n\geq 3.$ More precisely, under an integrability assumption, we obtain a characterization for the generalized cigar Ricci soliton and the Gaussian Ricci soliton.
Vertically vibrating a liquid bath may allow a self-propelled wave-particle entity to move on its free surface. The horizontal dynamics of this walking droplet, under the constraint of an external drag force, can be described adequately by an integro-differential trajectory equation. For a sinusoidal wave field, this equation is equivalent to a closed three-dimensional system of nonlinear ODEs. We explicitly define a stability boundary for the system and a quantised criterion for its partial integrability in the meromorphic category.
New classes of conditionally integrable systems of nonlinear reaction–diffusion equations are introduced. They are obtained by extending a well-known nonclassical symmetry of a scalar partial differential equation to a vector equation. New exact solutions of nonlinear predator–prey systems with cross-diffusion are constructed. Infinite dimensional classes of exact solutions are made available for such nonlinear systems. Some of these solutions decay towards extinction and some oscillate or spiral around an interior fixed point. It is shown that the conditionally integrable systems are closely related to the standard diffusive Lotka–Volterra system, but they have additional features.
The two main results in this paper concern the regularity of the invariant foliation of a
$C^0$
-integrable symplectic twist diffeomorphism of the two-dimensional annulus, namely that (i) the generating function of such a foliation is
$C^1$
, and (ii) the foliation is Hölder with exponent
$\tfrac 12$
. We also characterize foliations by graphs that are straightenable via a symplectic homeomorphism and prove that every symplectic homeomorphism that leaves invariant all the leaves of a straightenable foliation has Arnol’d–Liouville coordinates, in which the dynamics restricted to the leaves is conjugate to a rotation. We deduce that every Lipschitz integrable symplectic twist diffeomorphisms of the two-dimensional annulus has Arnol’d–Liouville coordinates and then provide examples of ‘strange’ Lipschitz foliations by smooth curves that cannot be straightened by a symplectic homeomorphism and cannot be invariant by a symplectic twist diffeomorphism.
With this chapter, the final part of the book, dedicated to collisionless stellar systems, begins. As should be clear, in order to extract information from the N-body problem, we need to move to a different approach than direct integration of the differential equations of motion, and a first (unfruitful) attempt will be based on the Liouville equation. In fact, the basic reason for the “failure” of the Liouville approach is that, despite its apparent statistical nature, the dimensionality of the phase space Γ where the function f(6N) is defined is the same as that of the original N-body problem. Suppose instead we find a way to replace the 6N-dimensional R6N phase space Γ with the six-dimensional one-particle phase space γ: we can reasonably expect that the problem would be simplified enormously, and in fact along these lines we will finally obtain the collisionless Boltzmann equation, one of the conceptual pillars of stellar dynamics.
Deterministic evolution is a hallmark of classical mechanics. Given a set of exact initial conditions, differential equations evolve the trajectories of particles into the future and can exactly predict the location of every particle at any instant in time. So what happens if our uncertainties in the initial position or velocity of a particle are tiny? Does that mean that our uncertainties about the subsequent motion of the particle are necessarily tiny as well? Or are there situations in which a very slight change in initial conditions leads to huge changes in the later motion? For example, can you really balance a pencil on its point? What has been learned in relatively recent years is that, in contrast to Laplace’s vision of a clock-like universe, deterministic systems are not necessarily predictable. What are the attributes of chaos and how can we quantify it? We begin our discussion with the notion of integrability, which ensures the absence of chaos.
We compactify and regularise the space of initial values of a planar map with a quartic invariant and use this construction to prove its integrability in the sense of algebraic entropy. The system has certain unusual properties, including a sequence of points of indeterminacy in
$\mathbb {P}^{1}\!\times \mathbb {P}^{1}$
. These indeterminacy points lie on a singular fibre of the mapping to a corresponding QRT system and provide the existence of a one-parameter family of special solutions.
We describe the notion of integrability in classical physics and the possible existence of a Lax pair. As examples of integrable systems, we describe Toda and Calogero–Moser systems and Toda field theory. Field theories are also obtained from discrete systems – for instance, spin systems. The Heisenberg model is described, and the resulting scalar field model obtained.
The dynamics of a charged particle in a relativistic strong electromagnetic plane wave propagating in a nonmagnetized medium is studied first. The problem is shown to be integrable when the wave propagates in vacuum. When it propagates in plasma, and when the full plasma response is considered, an exhaustive numerical work allows us to conclude that the problem is not integrable. The dynamics of a charged particle in a relativistic strong electromagnetic plane wave propagating along a constant homogeneous magnetic field is studied next. The problem is integrable when the wave propagates in vacuum. When it propagates in plasma, the problem becomes nonintegrable. Finally, one particle in a high intensity wave, propagating in a nonmagnetized medium, perturbed by a low intensity traveling wave is considered. Resonances are identified and conditions for resonance overlap are studied. Stochastic acceleration is shown by considering a single particle. It is confirmed in plasma in realistic situations with particle-in-cell code simulations.
Consider an isospectral manifold formed by matrices M ∈ glr(ℂ)[x] with a fixed leading term. The description of such a manifold is well known in the case of a diagonal leading term with different eigenvalues. On the other hand, there are many important systems where this term has multiple eigenvalues. One approach is to impose conditions in the sub-leading term. The result is that the isospectral set is a smooth manifold, bi-holomorphic to a Zariski open subset of the generalized Jacobian of a singular curve.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.