We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the zero-sharing behavior among irreducible characters of a finite group. For symmetric groups $\mathsf {S}_n$, it is proved that, with one exception, any two irreducible characters have at least one common zero. To further explore this phenomenon, we introduce the common-zero graph of a finite group G, with nonlinear irreducible characters of G as vertices, and edges connecting characters that vanish on some common group element. We show that for solvable and simple groups, the number of connected components of this graph is bounded above by three. Lastly, the result for $\mathsf {S}_n$ is applied to prove the nonequivalence of the metrics on permutations induced from faithful irreducible characters of the group.
We prove that if a solvable group A acts coprimely on a solvable group G, then A has a relatively ‘large’ orbit in its corresponding action on the set of ordinary complex irreducible characters of G. This improves an earlier result of Keller and Yang [‘Orbits of finite solvable groups on characters’, Israel J. Math.199 (2014), 933–940].
Let $G$ be a finite group. An element $g \in G$ is called a vanishing element in $G$ if there exists an irreducible character $\chi$ of $G$ such that $\chi (g)=0$. The size of a conjugacy class of $G$ containing a vanishing element is called a vanishing conjugacy class size of $G$. In this paper, we give an affirmative answer to the problem raised by Bianchi, Camina, Lewis and Pacifici about the solvability of finite groups with exactly one vanishing conjugacy class size.
When $G$ is a finite solvable group, we prove that $|G|$ can be bounded by a function in the number of irreducible characters with values in fields where $\mathbb{Q}$ is extended by prime power roots of unity. This gives a character theory analog for solvable groups of a theorem of Héthelyi and Külshammer that bounds the order of a finite group in terms of the number of conjugacy classes of elements of prime power order. In particular, we obtain for solvable groups a generalization of Landau’s theorem.
In this paper, we study Camina triples. Camina triples are a generalization of Camina pairs, first introduced in 1978 by A. R. Camina. Camina’s work was inspired by the study of Frobenius groups. We show that if $(G,\,N,\,M)$ is a Camina triple, then either $G/N$ is a $p$-group, or $M$ is abelian, or $M$ has a non-trivial nilpotent or Frobenius quotient.
For a finite group $H$, let $Irr(H)$ denote the set of irreducible characters of $H$, and define the ‘zeta function’ $\zeta^H(t) = \sum_{\chi \in Irr(H)} \chi(1)^{-t}$ for real $t > 0$. We study the asymptotic behaviour of $\zeta^H(t)$ for finite simple groups $H$ of Lie type, and also of a corresponding zeta function defined in terms of conjugacy classes. Applications are given to the study of random walks on simple groups, and on base sizes of primitive permutation groups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.