Maternal dietary vitamin D carry-over effects were assessed in young pigs to characterise skeletal abnormalities in a diet-induced model of kyphosis. Bone abnormalities were previously induced and bone mineral density (BMD) reduced in offspring from sows fed diets with inadequate vitamin D3. In a nested design, pigs from sows (n 23) fed diets with 0 (−D), 8·125 (+D) or 43·750 (++D) µg D3/kg from breeding through lactation were weaned and, within litter, fed nursery diets arranged as a 2×2 factorial design with 0 (−D) or 7·0 (+D) µg D3/kg, each with 95 % (95P) or 120 % (120P) of P requirements. Selected pigs were euthanised before colostrum consumption at birth (0 weeks, n 23), weaning (3 weeks, n 22) and after a growth period (8 weeks, n 185) for BMD, bone mechanical tests and tissue mRNA analysis. Pigs produced by +D or ++D sows had increased gain at 3 weeks (P<0·05), and at 8 weeks had increased BMD and improved femur mechanical properties. However, responses to nursery diets depended on maternal diets (P<0·05). Relative mRNA expressions of genes revealed a maternal dietary influence at birth in bone osteocalcin and at weaning in kidney 24-hydroxylase (P<0·05). Nursery treatments affected mRNA expressions at 8 weeks. Detection of a maternal and nursery diet interaction (P<0·05) provided insights into the long-term effects of maternal nutritional inputs. Characterising early stages of bone abnormalities provided inferences for humans and animals about maternal dietary influence on offspring skeletal health.