We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\zeta _K(s)$ denote the Dedekind zeta-function associated to a number field K. We give an effective upper bound for the height of the first nontrivial zero other than $1/2$ of $\zeta _K(s)$ under the generalised Riemann hypothesis. This is a refinement of the earlier bound obtained by Sami [‘Majoration du premier zéro de la fonction zêta de Dedekind’, Acta Arith.99(1) (2000), 61–65].
In this paper, we study lower-order terms of the one-level density of low-lying zeros of quadratic Hecke L-functions in the Gaussian field. Assuming the generalized Riemann hypothesis, our result is valid for even test functions whose Fourier transforms are supported in
$(-2, 2)$
. Moreover, we apply the ratios conjecture of L-functions to derive these lower-order terms as well. Up to the first lower-order term, we show that our results are consistent with each other when the Fourier transforms of the test functions are supported in
$(-2, 2)$
.
In this paper, we prove a one level density result for the low-lying zeros of quadratic Hecke L-functions of imaginary quadratic number fields of class number 1. As a corollary, we deduce, essentially, that at least
$(19-\cot (1/4))/16 = 94.27\ldots \%$
of the L-functions under consideration do not vanish at 1/2.
We study the distribution, in the space of Satake parameters, of local components of Siegel cusp forms of genus 2 and growing weight k, subject to a specific weighting which allows us to apply results concerning Bessel models and a variant of Petersson’s formula. We obtain for this family a quantitative local equidistribution result, and derive a number of consequences. In particular, we show that the computation of the density of low-lying zeros of the spinor L-functions (for restricted test functions) gives global evidence for a well-known conjecture of Böcherer concerning the arithmetic nature of Fourier coefficients of Siegel cusp forms.
Fix an elliptic curve $E/\mathbf{Q}$and assume the Riemann Hypothesis for the $L$-function $L({{E}_{D}},\,s)$ for every quadratic twist ${{E}_{D}}$ of $E$ by $D\,\in \,\mathbf{Z}$. We combine Weil's explicit formula with techniques of Heath-Brown to derive an asymptotic upper bound for the weighted moments of the analytic rank of ${{E}_{D}}$. We derive from this an upper bound for the density of low-lying zeros of $L({{E}_{D}},\,s)$ that is compatible with the randommatrixmodels of Katz and Sarnak. We also show that for any unbounded increasing function $f$ on $\mathbf{R}$, the analytic rank and (assuming in addition the Birch and Swinnerton-Dyer conjecture) the number of integral points of ${{E}_{D}}$ are less than $f(D)$ for almost all $D$.
In this paper, we prove some one level density results for the low-lying zeros of families of L-functions. More specifically, the families under consideration are that of L-functions of holomorphic Hecke eigenforms of level 1 and weight k twisted with quadratic Dirichlet characters and that of cubic and quartic Dirichlet L-functions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.