Let G be a p-group of maximal class of order pn. It is shown that the order of the group of all automorphisms of G centralizing the Frattini quotient takes the maximum value p2n−4 if and only if G is metabelian. A structure theorem is proved for the Sylow p-subgroup, Autp(G), of the automorphism group of G when G is metabelian. For p=2, Aut2(G) is the full automorphism group of G. For p=3, we prove a structure theorem for the full automorphism group of G.