Using an ultrafiltration membrane (molecular cut-off, 3000), low molecular weight compounds in bovine milk were collected (YM-3 filtrate). A hydrogen peroxide (H2O2)-like substance was generated in the YM-3 filtrate. This substance was undetected at 0 h, but increased in a time-dependent manner, peaking after 2 h of incubation at 38°C. After incubating the YM-3 filtrate with catalase and lactoperoxidase, the signal showing the presence of this substance disappeared. The substance was quantified using one chemiluminescence and three colorimetric H2O2 detection systems. In all systems, their estimates were within the same range. The amount of substance, as estimated by the chemiluminescence H2O2 detection system, was correlated with that estimated by the other three colorimetric systems (r=0·98, 0·95 and 0·87). The substance was eluted at the same position as H2O2 by gel filtration on Superdex 30. Thus, the substance had the same characteristics as H2O2. An H2O2-generating substance in either the YM-3 filtrate or whey had a molecular mass of about 600. In this study, we clarify that bovine milk is capable of generating H2O2 by utilizing a low molecular weight compound. Thus, we present a new type of H2O2-supplying system in bovine milk.