We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the study of the arithmetic degrees the $\omega \text {-REA}$ sets play a role analogous to the role the r.e. degrees play in the study of the Turing degrees. However, much less is known about the arithmetic degrees and the role of the $\omega \text {-REA}$ sets in that structure than about the Turing degrees. Indeed, even basic questions such as the existence of an $\omega \text {-REA}$ set of minimal arithmetic degree are open. This paper makes progress on this question by demonstrating that some promising approaches inspired by the analogy with the r.e. sets fail to show that no $\omega \text {-REA}$ set is arithmetically minimal. Finally, it constructs a $\prod ^0_{2}$ singleton of minimal arithmetic degree. Not only is this a result of considerable interest in its own right, constructions of $\prod ^0_{2}$ singletons often pave the way for constructions of $\omega \text {-REA}$ sets with similar properties. Along the way, a number of interesting results relating arithmetic reducibility and rates of growth are established.
An oracle A is low-for-speed if it is unable to speed up the computation of a set which is already computable: if a decidable language can be decided in time
$t(n)$
using A as an oracle, then it can be decided without an oracle in time
$p(t(n))$
for some polynomial p. The existence of a set which is low-for-speed was first shown by Bayer and Slaman who constructed a non-computable computably enumerable set which is low-for-speed. In this paper we answer a question previously raised by Bienvenu and Downey, who asked whether there is a minimal degree which is low-for-speed. The standard method of constructing a set of minimal degree via forcing is incompatible with making the set low-for-speed; but we are able to use an interesting new combination of forcing and full approximation to construct a set which is both of minimal degree and low-for-speed.
In this paper, we study finite semiprimitive permutation groups, that is, groups in which each normal subgroup is transitive or semiregular. These groups have recently been investigated in terms of their abstract structure, in a similar way to the O'Nan–Scott Theorem for primitive groups. Our goal here is to explore aspects of such groups which may be useful in place of precise structural information. We give bounds on the order, base size, minimal degree, fixed point ratio, and chief length of an arbitrary finite semiprimitive group in terms of its degree. To establish these bounds, we study the structure of a finite semiprimitive group that induces the alternating or symmetric group on the set of orbits of an intransitive minimal normal subgroup.
Jockusch showed that 2-generic degrees are downward dense below a 2-generic degree. That is, if a is 2-generic, and $0 < {\bf{b}} < {\bf{a}}$, then there is a 2-generic g with $0 < {\bf{g}} < {\bf{b}}.$ In the case of 1-generic degrees Kumabe, and independently Chong and Downey, constructed a minimal degree computable from a 1-generic degree. We explore the tightness of these results.
We solve a question of Barmpalias and Lewis-Pye by constructing a minimal degree computable from a weakly 2-generic one. While there have been full approximation constructions of ${\rm{\Delta }}_3^0$ minimal degrees before, our proof is rather novel since it is a computable full approximation construction where both the generic and the minimal degrees are ${\rm{\Delta }}_3^0 - {\rm{\Delta }}_2^0$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.