We study the reflection of membrane-coupled gravity waves in deep water against a vertical barrier with a gap. A floating membrane is attached on both sides of the barrier. The associated mixed boundary value problem, which is not particularly well posed, is analysed. We utilize an orthogonal mode-coupling relation to reduce the problem to solving a set of dual integral equations with trigonometric kernel. We solve these by using a weakly singular integral equation. The reflection coefficient is determined explicitly, while having freedom to clamp the membrane with a spring of a certain stiffness on only one side of the vertical barrier. The physical problem is of capillary–gravity wave scattering by a vertical barrier with a gap, when the membrane density is neglected. In this case, the reflection coefficient is known up to an undetermined edge slope on either side of the barrier. The scattering quantity is computed and presented graphically against a wave parameter for different values of nondimensional parameters pertaining to the structures involved in the problem.