Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T05:22:18.286Z Has data issue: false hasContentIssue false

WATER WAVE SCATTERING BY A VERTICAL POROUS BARRIER WITH TWO GAPS

Published online by Cambridge University Press:  30 January 2019

M. SIVANESAN*
Affiliation:
Indian Institute of Technology Madras, Chennai 600036, India email sivanesaniitm@gmail.com, manam@iitm.ac.in
S. R. MANAM
Affiliation:
Indian Institute of Technology Madras, Chennai 600036, India email sivanesaniitm@gmail.com, manam@iitm.ac.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Explicit solutions are rarely available for water wave scattering problems. An analytical procedure is presented here to solve the boundary value problem associated with wave scattering by a complete vertical porous barrier with two gaps in it. The original problem is decomposed into four problems involving vertical solid barriers. The decomposed problems are solved analytically by using a weakly singular integral equation. Explicit expressions are obtained for the scattering amplitudes and numerical results are presented. The results obtained can be used as a benchmark for other wave scattering problems involving complex geometrical structures.

Type
Research Article
Copyright
© 2019 Australian Mathematical Society 

References

Chakrabarti, A., Manam, S. R. and Benerjea, S., “Scattering of surface water waves involving a vertical barrier with a gap”, J. Engrg. Math. 45 (2003) 183194; doi:10.1023/A:1022170132055.Google Scholar
Chwang, A. T., “A porous-wavemaker theory”, J. Fluid Mech. 132 (1983) 395406; doi:10.1017/S0022112083001676.Google Scholar
Dean, W. R., “On the reflection of surface waves by a submerged plane barrier”, Proc. Cambridge Philos. Soc. 41 (1945) 231238; doi:10.1017/S030500410002260X.Google Scholar
Havelock, T. H., “Forced surface waves on water”, Philos. Mag. Ser. F 8 (1929) 569576; doi:10.1080/14786441008564913.Google Scholar
Lamb, H., Hydrodynamics (Cambridge University Press, Cambridge, 1932).Google Scholar
Lewin, M., “The effect of vertical barriers on progressive waves”, J. Math. Phys. 42 (1963) 287300; doi:10.1002/sapm1963421287.Google Scholar
Manam, S. R., “A logarithmic singular integral equation over multiple intervals”, Appl. Math. Lett. 16 (2003) 10311037; doi:10.1016/S0893-9659(03)90091-7.Google Scholar
Manam, S. R. and Kaligatla, R. B., “Membrane-coupled gravity wave scattering by a vertical barrier with a gap”, ANZIAM J. 55 (2014) 267288; doi:10.1017/S1446181114000078.Google Scholar
Manam, S. R. and Sivanesan, M., “Scattering of water waves by vertical porous barriers: an analytical approach”, Wave Motion 67 (2016) 89101; doi:10.1016/j.wavemoti.2016.07.008.Google Scholar
Manam, S. R. and Sivanesan, M., “A note on the explicit solutions for wave scattering by vertical porous barriers”, Wave Motion 69 (2017) 8190; doi:10.1016/j.wavemoti.2016.11.010.Google Scholar
Mandal, B. N. and Chakrabarti, A., Water wave scattering by barriers (WIT Press, Southampton, 2000).Google Scholar
Mei, C. C., “Radiation and scattering of transient gravity waves by vertical plates”, Quart. J. Mech. Appl. Math. 19 (1966) 417440; doi:10.1093/qjmam/19.4.417.Google Scholar
Porter, D., “The transmission of surface waves through a gap in a vertical barrier”, Proc. Cambridge Philos. Soc. 71 (1972) 411421; doi:10.1017/S0305004100050647.Google Scholar
Porter, D., “The radiation and scattering of surface waves by vertical barriers”, J. Fluid Mech. 63 (1974) 625634; doi:10.1017/S0022112074002096.Google Scholar
Porter, R. and Evans, D. V., “Connections between potentials describing wave scattering by complementary arrangements of vertical barriers”, Quart. J. Mech. Appl. Math. 67 (2014) 175192; doi:10.1093/qjmam/hbu002.Google Scholar
Ursell, F., “The effect of a fixed vertical barrier on surface waves in deep water”, Proc. Cambridge Philos. Soc. 43 (1947) 374382; doi:10.1017/S0305004100023604.Google Scholar
Yu, X. and Chwang, A. T., “Wave motion through porous structures”, J. Engrg. Mech. 120 (1994) 9891008; doi:10.1061/(ASCE)0733-9399(1994)120:5(989).Google Scholar