In this note we identify the classes of $\text{Q}$-homological planes in the Grothendieck group of complex varieties ${{K}_{0}}\left( \text{Va}{{\text{r}}_{\text{C}}} \right)$. Precisely, we prove that a connected, smooth, affine, complex, algebraic surface $X$ is a $\text{Q}$-homological plane if and only if $\left[ X \right]\,=\,\left[ \text{A}_{\text{C}}^{2} \right]$ in the ring ${{K}_{0}}\left( \text{Va}{{\text{r}}_{\text{C}}} \right)$ and $\text{Pic}{{\left( X \right)}_{\text{Q}}}\,:=\,\text{Pic}\left( X \right)\,{{\otimes }_{\text{Z}}}\,\text{Q}\,\text{=}\,\text{0}$.