We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To compare the genetic testing results of neonates with CHD by chromosomal microarray to karyotyping and fluorescence in situ hybridisation analysis.
Methods:
This was a single-centre retrospective comparative study of patients with CHD and available genetic testing results admitted to the cardiac ICU between January, 2004 and December, 2017. Patients from 2004 to 2010 were tested by karyotyping and fluorescence in situ hybridisation analysis, while patients from 2012 to 2017 were analysed by chromosomal microarray.
Results:
Eight-hundred and forty-nine neonates with CHD underwent genetic testing, 482 by karyotyping and fluorescence in situ hybridization, and 367 by chromosomal microarray. In the karyotyping and fluorescence in situ hybridisation analysis group, 86/482 (17.8%) had genetic abnormalities detected, while in the chromosomal microarray group, 135/367 (36.8%) had genetic abnormalities detected (p < 0.00001). Of patients with abnormal chromosomal microarray results, 41/135 (30.4%) had genetic abnormality associated with neurodevelopmental disorders that were exclusively identified by chromosomal microarray. Conotruncal abnormalities were the most common diagnosis in both groups, with karyotyping and fluorescence in situ hybridisation analysis detecting genetic abnormalities in 26/160 (16.3%) patients and chromosomal microarray detecting abnormalities in 41/135 (30.4%) patients (p = 0.004). In patients with d-transposition of the great arteries, 0/68 (0%) were found to have genetic abnormalities by karyotyping and fluorescence in situ hybridisation compared to 7/54 (13.0%) by chromosomal microarray.
Conclusions:
Chromosomal microarray identified patients with CHD at genetic risk of neurodevelopmental disorders, allowing earlier intervention with multidisciplinary care and more accurate pre-surgical prognostic counselling.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.