The longhorn beetle Cerambyx welensii is an emerging pest involved in oak decline episodes, whose damage is increasingly reported in dehesa open woodlands. Knowledge of the reproductive biology of C. welensii is a crucial goal due to its new pest status. In this study, we assess the reproductive traits of both sexes in the laboratory (25°C and 60% relative humidity ). In females, body length was 44.9 ± 0.9 mm (mean ± SE), fecundity 132 ± 12 eggs, fertility 70 ± 1 %, longevity 70 ± 3 days, preoviposition period 2 ± 0.2 days, oviposition period 44 ± 3 days and postoviposition period 19 ± 3 days. Fecundity was positively correlated with female size, longevity and oviposition period. Daily fecundity was 3.0 ± 0.2 eggs/day and showed a fluctuating synovigenic pattern with a slight decreasing trend over time. Egg length was 4.24 ± 0.01 mm and egg volume 8.14 ± 0.04 mm3. Egg size was correlated with female size but the relative size of eggs was larger in smaller females. Incubation time was 13.9 ± 0.1 days and hatching did not depend on egg size. Neonate size was positively correlated with egg length. Females were polyandrous (more than 20 lifetime matings) but multiple mating did not increase fecundity, fertility or longevity. In males, body length was 43.7 ± 0.6 mm and longevity 52 ± 3 days. Unlike with females, longevity was positively correlated with male size. Males were polygynous (up to 30 lifetime matings) but mating history did not affect male longevity. Rather to the contrary, long-lived males mated more times because they had more mating chances. Lastly, C. welensii reproductive traits were compared with those other Cerambycidae species and discussed from an adaptive perspective. Our data will be useful to improve management of C. welensii in order to prevent or mitigate its impact in dehesa woodlands and other oak forests.