We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Nous montrons, pour une grande famille de propriétés des espaces homogènes, qu’une telle propriété vaut pour tout espace homogène d’un groupe linéaire connexe dès qu’elle vaut pour les espaces homogènes de $\text{SL}_{n}$ à stabilisateur fini. Nous réduisons notamment à ce cas particulier la vérification d’une importante conjecture de Colliot-Thélène sur l’obstruction de Brauer–Manin au principe de Hasse et à l’approximation faible. Des travaux récents de Harpaz et Wittenberg montrent que le résultat principal s’applique également à la conjecture analogue (dite conjecture (E)) pour les zéro-cycles.
Let $G$ be a connected linear algebraic group over a number field $k$. Let $U{\hookrightarrow}X$ be a $G$-equivariant open embedding of a $G$-homogeneous space $U$ with connected stabilizers into a smooth $G$-variety $X$. We prove that $X$ satisfies strong approximation with Brauer–Manin condition off a set $S$ of places of $k$ under either of the following hypotheses:
(i)$S$ is the set of archimedean places;
(ii)$S$ is a non-empty finite set and $\bar{k}^{\times }=\bar{k}[X]^{\times }$.
The proof builds upon the case $X=U$, which has been the object of several works.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.