We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove equality of the various rational $p$-adic period morphisms for smooth, not necessarily proper, schemes. We start with showing that the $K$-theoretical uniqueness criterion we had found earlier for proper smooth schemes extends to proper finite simplicial schemes in the good reduction case and to cohomology with compact support in the semistable reduction case. It yields the equality of the period morphisms for cohomology with compact support defined using the syntomic, almost étale, and motivic constructions. We continue with showing that the $h$-cohomology period morphism agrees with the syntomic and almost étale period morphisms whenever the latter morphisms are defined (and up to a change of Hyodo–Kato cohomology). We do it by lifting the syntomic and almost étale period morphisms to the $h$-site of varieties over a field, where their equality with the $h$-cohomology period morphism can be checked directly using the Beilinson Poincaré lemma and the case of dimension $0$. This also shows that the syntomic and almost étale period morphisms have a natural extension to the Voevodsky triangulated category of motives and enjoy many useful properties (since so does the $h$-cohomology period morphism).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.