We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Wielandt subgroup of a group $G$, denoted by ${\it\omega}(G)$, is the intersection of the normalisers of all subnormal subgroups of $G$. The terms of the Wielandt series of $G$ are defined, inductively, by putting ${\it\omega}_{0}(G)=1$ and ${\it\omega}_{i+1}(G)/{\it\omega}_{i}(G)={\it\omega}(G/{\it\omega}_{i}(G))$. In this paper, we investigate the relations between the$p$-length of a $p$-soluble finite group and the Wielandt series of its Sylow $p$-subgroups. Some recent results are improved.
The $p$-length of a finite $p$-soluble group is an important invariant parameter. The well-known Hall–Higman $p$-length theorem states that the $p$-length of a $p$-soluble group is bounded above by the nilpotent class of its Sylow $p$-subgroups. In this paper, we improve this result by giving a better estimation on the $p$-length of a $p$-soluble group in terms of other invariant parameters of its Sylow $p$-subgroups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.